
Multilevel Monte-Carlo algorithms
for Lévy-driven SDE’s

Steffen Dereich

U Marburg / WWU Münster

http://www.mathematik.uni-marburg.de/~dereich/

CREST and 4th Ritsumeikan-Florence Workshop, 8/03/2012

http://www.mathematik.uni-marburg.de/~dereich/

Outline of the talk

I Introduction

II The information based complexity point of view

III Multilevel Monte Carlo algorithms

IV Application to Lévy processes

V Numerical experiments

I Introduction

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

b(Ys−)ds +

∫ t

0

a(Ys−) dXs ,

where σ : RdY → RdY×dX and b : RdY → RdY are Lipschitz continuous
C∞-coefficients and X is a Wiener (or more generally a Lévy process).

Quadrature problem: Computation of expectations

S(f) := E[f (Y)],

where f : D[0, 1]→ R satisfies certain smoothness assumptions (D[0, 1]
denotes the Skorokhod space of càdlàg functions on [0, 1]).

E.g.: f (x) = (
∫ 1

0
xt dt − K)+ or f (x) = maxt∈[0,1] xt

I Introduction

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

b(Ys−)ds +

∫ t

0

a(Ys−) dXs ,

where σ : RdY → RdY×dX and b : RdY → RdY are Lipschitz continuous
C∞-coefficients and X is a Wiener (or more generally a Lévy process).

Quadrature problem: Computation of expectations

S(f) := E[f (Y)],

where f : D[0, 1]→ R satisfies certain smoothness assumptions (D[0, 1]
denotes the Skorokhod space of càdlàg functions on [0, 1]).

E.g.: f (x) = (
∫ 1

0
xt dt − K)+ or f (x) = maxt∈[0,1] xt

I Motivation
Approximations: Take a family of approximate solutions {Y (m) : m ∈ N} with
exponentially increasing complexity, for instance Euler with stepsize 2−m.

Classical Monte Carlo:

S(f) = E[f (Y)] ≈ E[f (Y (m))] ≈ 1

n

n∑
i=1

f (Y (m,i)),

where Y (m,1),Y (m,2), . . . are independent copies of Y (m).

Monte Carlo with extrapolation: (Talay, Tubaro ’90, Bally, Talay ’96)

E[f (Y)] ≈ E[2f (Y (m+1))− f (Y (m))] ≈ 1

n

n∑
i=1

2f (Y (m+1,i))− f (Y (m,i)),

where (Y (m+1,1),Y (m,1)), . . . are independent copies of (Y (m+1),Y (m)).

Approximation error: Typically one gets for non-path dependent options for
classical Monte Carlo

root mean squared error ≈ N−1/3

and for Monte Carlo with extrapolation

root mean squared error ≈ N−2/5

in the computational time N as N →∞.

I Motivation
Approximations: Take a family of approximate solutions {Y (m) : m ∈ N} with
exponentially increasing complexity, for instance Euler with stepsize 2−m.

Classical Monte Carlo:

S(f) = E[f (Y)] ≈ E[f (Y (m))] ≈ 1

n

n∑
i=1

f (Y (m,i)),

where Y (m,1),Y (m,2), . . . are independent copies of Y (m).

Monte Carlo with extrapolation: (Talay, Tubaro ’90, Bally, Talay ’96)

E[f (Y)] ≈ E[2f (Y (m+1))− f (Y (m))] ≈ 1

n

n∑
i=1

2f (Y (m+1,i))− f (Y (m,i)),

where (Y (m+1,1),Y (m,1)), . . . are independent copies of (Y (m+1),Y (m)).

Approximation error: Typically one gets for non-path dependent options for
classical Monte Carlo

root mean squared error ≈ N−1/3

and for Monte Carlo with extrapolation

root mean squared error ≈ N−2/5

in the computational time N as N →∞.

I Motivation
Approximations: Take a family of approximate solutions {Y (m) : m ∈ N} with
exponentially increasing complexity, for instance Euler with stepsize 2−m.

Classical Monte Carlo:

S(f) = E[f (Y)] ≈ E[f (Y (m))] ≈ 1

n

n∑
i=1

f (Y (m,i)),

where Y (m,1),Y (m,2), . . . are independent copies of Y (m).

Monte Carlo with extrapolation: (Talay, Tubaro ’90, Bally, Talay ’96)

E[f (Y)] ≈ E[2f (Y (m+1))− f (Y (m))] ≈ 1

n

n∑
i=1

2f (Y (m+1,i))− f (Y (m,i)),

where (Y (m+1,1),Y (m,1)), . . . are independent copies of (Y (m+1),Y (m)).

Approximation error: Typically one gets for non-path dependent options for
classical Monte Carlo

root mean squared error ≈ N−1/3

and for Monte Carlo with extrapolation

root mean squared error ≈ N−2/5

in the computational time N as N →∞.

I Motivation

Alternatives for approximate soutions: Kusuoka-Lyons-Victoir methods,
splitting methods, . . .

Strong research activity since the 90s with contribution by (e.g.) Kusuoka,
Kohatsu-Higa and many others

Focus of the talk:

I Lower bounds for quadrature problems

II Multilevel methods with a focus on Lévy-driven SDEs

In [I] we will follow the ideas of information based complexity (Novak,
Plaskota, Ritter, Sloan, Wasilkowski, Wozniakowski, . . .) and specify an
algorithmic problem and provide lower bounds.

In [II] we briefly introduce multilevel Monte Carlo and provide upper bounds for

their efficiency for Lévy-driven SDEs

II Information based complexity point of view
Question: Can one prove lower bounds in the quadrature problem?

We restrict attention to continuous diffusions.

For doing so we need to specify

(a) a class F of functions on which we test the algorithm

(b) the computational cost of algorithms and

(c) an error criterion.

(a): We consider F as the 1-Lipschitz continuous functions f : C [0, 1]→ R
(w.r.t. supremum norm)

(b): Specify a nested sequence {Vn : n ∈ N0} of linear subsets of C [0, 1] with
dimension dim(Vn) = n and charge each evaluation of f for a path
x ∈ Vn\Vn−1 with cost n. All real number operations are allowed.

(c): An algorithm Ŝ produces a possibly random output Ŝ(f) when applied to
f and we consider the worst-case-error

err(Ŝ) := sup
f∈F

E[(S(f)− Ŝ(f))2]1/2.

Task: Prove lower bounds for the minimal error

e(N) := inf{err(Ŝ) : cost(Ŝ) ≤ N}.

II Information based complexity point of view
Question: Can one prove lower bounds in the quadrature problem?

We restrict attention to continuous diffusions.

For doing so we need to specify

(a) a class F of functions on which we test the algorithm

(b) the computational cost of algorithms and

(c) an error criterion.

(a): We consider F as the 1-Lipschitz continuous functions f : C [0, 1]→ R
(w.r.t. supremum norm)

(b): Specify a nested sequence {Vn : n ∈ N0} of linear subsets of C [0, 1] with
dimension dim(Vn) = n and charge each evaluation of f for a path
x ∈ Vn\Vn−1 with cost n. All real number operations are allowed.

(c): An algorithm Ŝ produces a possibly random output Ŝ(f) when applied to
f and we consider the worst-case-error

err(Ŝ) := sup
f∈F

E[(S(f)− Ŝ(f))2]1/2.

Task: Prove lower bounds for the minimal error

e(N) := inf{err(Ŝ) : cost(Ŝ) ≤ N}.

II Information based complexity point of view
Question: Can one prove lower bounds in the quadrature problem?

We restrict attention to continuous diffusions.

For doing so we need to specify

(a) a class F of functions on which we test the algorithm

(b) the computational cost of algorithms and

(c) an error criterion.

(a): We consider F as the 1-Lipschitz continuous functions f : C [0, 1]→ R
(w.r.t. supremum norm)

(b): Specify a nested sequence {Vn : n ∈ N0} of linear subsets of C [0, 1] with
dimension dim(Vn) = n and charge each evaluation of f for a path
x ∈ Vn\Vn−1 with cost n. All real number operations are allowed.

(c): An algorithm Ŝ produces a possibly random output Ŝ(f) when applied to
f and we consider the worst-case-error

err(Ŝ) := sup
f∈F

E[(S(f)− Ŝ(f))2]1/2.

Task: Prove lower bounds for the minimal error

e(N) := inf{err(Ŝ) : cost(Ŝ) ≤ N}.

II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter ’09

Variable subspace sampling:

evariable(N) ≥ constN−1/2

Fixed subspace sampling: Algorithm needs to specify one subspace Vn at first
and sampling is only possible in Vn at cost n.

efixed(N) ≥ constN−1/4 (logN)−3/4

Full space sampling: Algorithm is allowed to sample arbitrarily and each
evaluation of f costs one unit.

efree(N) ≥ constN−1/2(logN)−3/2

Comments: The first two lower bounds are sharp up to logarithms and there
exist algorithms that reach the lower bounds up to logarithms under a
reasonable notion of “cost” (runtime):

I Fixed subspace sampling: classical Monte Carlo with Euler

I Variable subspace sampling: multilevel Monte Carlo with Euler

II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter ’09

Variable subspace sampling:

evariable(N) ≥ constN−1/2

Fixed subspace sampling: Algorithm needs to specify one subspace Vn at first
and sampling is only possible in Vn at cost n.

efixed(N) ≥ constN−1/4 (logN)−3/4

Full space sampling: Algorithm is allowed to sample arbitrarily and each
evaluation of f costs one unit.

efree(N) ≥ constN−1/2(logN)−3/2

Comments: The first two lower bounds are sharp up to logarithms and there
exist algorithms that reach the lower bounds up to logarithms under a
reasonable notion of “cost” (runtime):

I Fixed subspace sampling: classical Monte Carlo with Euler

I Variable subspace sampling: multilevel Monte Carlo with Euler

II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter ’09

Variable subspace sampling:

evariable(N) ≥ constN−1/2

Fixed subspace sampling: Algorithm needs to specify one subspace Vn at first
and sampling is only possible in Vn at cost n.

efixed(N) ≥ constN−1/4 (logN)−3/4

Full space sampling: Algorithm is allowed to sample arbitrarily and each
evaluation of f costs one unit.

efree(N) ≥ constN−1/2(logN)−3/2

Comments: The first two lower bounds are sharp up to logarithms and there
exist algorithms that reach the lower bounds up to logarithms under a
reasonable notion of “cost” (runtime):

I Fixed subspace sampling: classical Monte Carlo with Euler

I Variable subspace sampling: multilevel Monte Carlo with Euler

II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter ’09

Variable subspace sampling:

evariable(N) ≥ constN−1/2

Fixed subspace sampling: Algorithm needs to specify one subspace Vn at first
and sampling is only possible in Vn at cost n.

efixed(N) ≥ constN−1/4 (logN)−3/4

Full space sampling: Algorithm is allowed to sample arbitrarily and each
evaluation of f costs one unit.

efree(N) ≥ constN−1/2(logN)−3/2

Comments: The first two lower bounds are sharp up to logarithms and there
exist algorithms that reach the lower bounds up to logarithms under a
reasonable notion of “cost” (runtime):

I Fixed subspace sampling: classical Monte Carlo with Euler

I Variable subspace sampling: multilevel Monte Carlo with Euler

II Remarks on the proofs

The proofs are based on

I average Kolmogorov widths of diffusions in V = (C [0, 1], ‖ · ‖∞) that is
the asymptotics of

dn := inf{E[d(Y ,V0)] : V0 ⊂ V , dim(V0) ≤ 2n−1}

I an idea taken from Bakhvalov (’59) for proving lower bounds

I a connection to quantization complexity

Comments:

I General Gaussian measures are included in the analysis

I The results are sharp up to powers of logarithms
 Multilevel Monte Carlo algorithms

II Remarks on the proofs

The proofs are based on

I average Kolmogorov widths of diffusions in V = (C [0, 1], ‖ · ‖∞) that is
the asymptotics of

dn := inf{E[d(Y ,V0)] : V0 ⊂ V , dim(V0) ≤ 2n−1}

I an idea taken from Bakhvalov (’59) for proving lower bounds

I a connection to quantization complexity

Comments:

I General Gaussian measures are included in the analysis

I The results are sharp up to powers of logarithms
 Multilevel Monte Carlo algorithms

III Multilevel Monte Carlo algorithms

Ref.: Heinrich ’98, Giles ’08

Aim: Computation of S(f) := E[f (Y)] for an implicit random element Y
attaining values in a normed space (V , ‖ · ‖)
(e.g., Y = (Yt)t∈[0,1] solution of SDE)

Approximate solutions: Y (1),Y (2), . . .
(e.g., Y (k) Euler approximation with step size 2−k)

Classical Monte Carlo: Y ≈ Y (m)

Approximate Y by Y (m) and use Monte Carlo to approximate E[f (Y (m))].

Multilevel scheme: Y ≈ Y (m) ←→ Y (m−1) ←→ . . .←→ Y (2) ←→ Y (1)

Use Monte Carlo to approximate E[f (Y (k))− f (Y (k−1))].

Features: • scheme very efficient for diffusions, Gaussian processes, ...

• often errors of order O(N−1/2)

• in the setting of part II: O(N−1/2(logN)3/2)
• scheme is robust: applicable under weak assumptions,

good performance for discontinuous f

III Multilevel Monte Carlo algorithms

Ref.: Heinrich ’98, Giles ’08

Aim: Computation of S(f) := E[f (Y)] for an implicit random element Y
attaining values in a normed space (V , ‖ · ‖)
(e.g., Y = (Yt)t∈[0,1] solution of SDE)

Approximate solutions: Y (1),Y (2), . . .
(e.g., Y (k) Euler approximation with step size 2−k)

Classical Monte Carlo: Y ≈ Y (m)

Approximate Y by Y (m) and use Monte Carlo to approximate E[f (Y (m))].

Multilevel scheme: Y ≈ Y (m) ←→ Y (m−1) ←→ . . .←→ Y (2) ←→ Y (1)

Use Monte Carlo to approximate E[f (Y (k))− f (Y (k−1))].

Features: • scheme very efficient for diffusions, Gaussian processes, ...

• often errors of order O(N−1/2)

• in the setting of part II: O(N−1/2(logN)3/2)
• scheme is robust: applicable under weak assumptions,

good performance for discontinuous f

III Multilevel Monte Carlo algorithms

Ref.: Heinrich ’98, Giles ’08

Aim: Computation of S(f) := E[f (Y)] for an implicit random element Y
attaining values in a normed space (V , ‖ · ‖)
(e.g., Y = (Yt)t∈[0,1] solution of SDE)

Approximate solutions: Y (1),Y (2), . . .
(e.g., Y (k) Euler approximation with step size 2−k)

Classical Monte Carlo: Y ≈ Y (m)

Approximate Y by Y (m) and use Monte Carlo to approximate E[f (Y (m))].

Multilevel scheme: Y ≈ Y (m) ←→ Y (m−1) ←→ . . .←→ Y (2) ←→ Y (1)

Use Monte Carlo to approximate E[f (Y (k))− f (Y (k−1))].

Features: • scheme very efficient for diffusions, Gaussian processes, ...

• often errors of order O(N−1/2)

• in the setting of part II: O(N−1/2(logN)3/2)
• scheme is robust: applicable under weak assumptions,

good performance for discontinuous f

III Multilevel Monte Carlo algorithms

Ref.: Heinrich ’98, Giles ’08

Aim: Computation of S(f) := E[f (Y)] for an implicit random element Y
attaining values in a normed space (V , ‖ · ‖)
(e.g., Y = (Yt)t∈[0,1] solution of SDE)

Approximate solutions: Y (1),Y (2), . . .
(e.g., Y (k) Euler approximation with step size 2−k)

Classical Monte Carlo: Y ≈ Y (m)

Approximate Y by Y (m) and use Monte Carlo to approximate E[f (Y (m))].

Multilevel scheme: Y ≈ Y (m) ←→ Y (m−1) ←→ . . .←→ Y (2) ←→ Y (1)

Use Monte Carlo to approximate E[f (Y (k))− f (Y (k−1))].

Features: • scheme very efficient for diffusions, Gaussian processes, ...

• often errors of order O(N−1/2)

• in the setting of part II: O(N−1/2(logN)3/2)
• scheme is robust: applicable under weak assumptions,

good performance for discontinuous f

III Multilevel Monte Carlo algorithms

Ref.: Heinrich ’98, Giles ’08

Aim: Computation of S(f) := E[f (Y)] for an implicit random element Y
attaining values in a normed space (V , ‖ · ‖)
(e.g., Y = (Yt)t∈[0,1] solution of SDE)

Approximate solutions: Y (1),Y (2), . . .
(e.g., Y (k) Euler approximation with step size 2−k)

Classical Monte Carlo: Y ≈ Y (m)

Approximate Y by Y (m) and use Monte Carlo to approximate E[f (Y (m))].

Multilevel scheme: Y ≈ Y (m) ←→ Y (m−1) ←→ . . .←→ Y (2) ←→ Y (1)

Use Monte Carlo to approximate E[f (Y (k))− f (Y (k−1))].

Features: • scheme very efficient for diffusions, Gaussian processes, ...

• often errors of order O(N−1/2)

• in the setting of part II: O(N−1/2(logN)3/2)
• scheme is robust: applicable under weak assumptions,

good performance for discontinuous f

III The MLMC algorithm

Telescoping sum:

E[f (Y (m))] =
m∑

k=2

E[f (Y (k))− f (Y (k−1))] + E[f (Y (1))].

Approximate each expectation E[f (Y (k))− f (Y (k−1))], resp. E[f (Y (1))],
by nk independent Monte-Carlo simulations.

Output: Ŝ(f) = sum of the individual random approximations.

Error estimate (mse):

E
[(
S(f)− Ŝ(f)

)2]
=|E[f (Y)]− E[f (Y (m))]|2

+
m∑

k=2

1

nk
var(f (Y (k))− f (Y (k−1))) +

1

n1
var(f (Y (1))).

Advantage: only few of the expensive simulations are necessary.

III The MLMC algorithm

Telescoping sum:

E[f (Y (m))] =
m∑

k=2

E[f (Y (k))− f (Y (k−1))] + E[f (Y (1))].

Approximate each expectation E[f (Y (k))− f (Y (k−1))], resp. E[f (Y (1))],
by nk independent Monte-Carlo simulations.

Output: Ŝ(f) = sum of the individual random approximations.

Error estimate (mse):

E
[(
S(f)− Ŝ(f)

)2]
=|E[f (Y)]− E[f (Y (m))]|2

+
m∑

k=2

1

nk
var(f (Y (k))− f (Y (k−1))) +

1

n1
var(f (Y (1))).

Advantage: only few of the expensive simulations are necessary.

III Error estimates on Lip-class

If f is Lipschitz continuous with coefficient one, then

E
[(
S(f)− Ŝ(f)

)2] ≤ W(PY ,PY (m))
2 + const

m∑
k=1

1

nk
E[‖Y − Y (k)‖2],

where W denotes the Wasserstein metric

W(Q1,Q2) = inf
{∫
‖x − y‖ dξ(x , y) : Q1 = π1(ξ),Q2 = π2(ξ)

}

Note: The error estimate does not depend on f and we need estimates for

(W) W(PY ,PY (m)) (weak approximation)

(S) E[‖Y − Y (k)‖2] (strong approximation)

III Error estimates on Lip-class

If f is Lipschitz continuous with coefficient one, then

E
[(
S(f)− Ŝ(f)

)2] ≤ W(PY ,PY (m))
2 + const

m∑
k=1

1

nk
E[‖Y − Y (k)‖2],

where W denotes the Wasserstein metric

W(Q1,Q2) = inf
{∫
‖x − y‖ dξ(x , y) : Q1 = π1(ξ),Q2 = π2(ξ)

}
Note: The error estimate does not depend on f and we need estimates for

(W) W(PY ,PY (m)) (weak approximation)

(S) E[‖Y − Y (k)‖2] (strong approximation)

III Complexity theorem

Assumptions: There exist 0 < β ≤ 2α and a real constant c s.th.

(W) W(PY ,PY (m)) ≤ c(2−m)α

(S) E[‖Y − Y (k)‖2] ≤ c(2−m)β

Further we assign each joint simulation of f (Y (k))− f (Y (k−1)) the cost c 2k .

Theorem: (Giles ’08) Fixing the parameters (highest level m and iteration
numbers n1, . . . , nm) appropriately one obtains a sequence of MLMC algorithms

(ŜN : N ∈ N) each having cost less than or equal to N and satisfying

err(ŜN) = sup
f∈Lip1

E[(S(f)− ŜN(f))2]1/2 ≤ const


N−1/2, β > 1

N−1/2(logN)1/2, β = 1

N−
α

1+2α−β , β < 1,

where const is a constant only depending on α, β and c.

Conversely: Appropriate classical Monte Carlo algorithms (ŜN : N ∈ N) lead to

err(ŜN) ≤ constN−
α

1+2α .

III Complexity theorem

Assumptions: There exist 0 < β ≤ 2α and a real constant c s.th.

(W) W(PY ,PY (m)) ≤ c(2−m)α

(S) E[‖Y − Y (k)‖2] ≤ c(2−m)β

Further we assign each joint simulation of f (Y (k))− f (Y (k−1)) the cost c 2k .

Theorem: (Giles ’08) Fixing the parameters (highest level m and iteration
numbers n1, . . . , nm) appropriately one obtains a sequence of MLMC algorithms

(ŜN : N ∈ N) each having cost less than or equal to N and satisfying

err(ŜN) = sup
f∈Lip1

E[(S(f)− ŜN(f))2]1/2 ≤ const


N−1/2, β > 1

N−1/2(logN)1/2, β = 1

N−
α

1+2α−β , β < 1,

where const is a constant only depending on α, β and c.

Conversely: Appropriate classical Monte Carlo algorithms (ŜN : N ∈ N) lead to

err(ŜN) ≤ constN−
α

1+2α .

III Complexity theorem

Assumptions: There exist 0 < β ≤ 2α and a real constant c s.th.

(W) W(PY ,PY (m)) ≤ c(2−m)α

(S) E[‖Y − Y (k)‖2] ≤ c(2−m)β

Further we assign each joint simulation of f (Y (k))− f (Y (k−1)) the cost c 2k .

Theorem: (Giles ’08) Fixing the parameters (highest level m and iteration
numbers n1, . . . , nm) appropriately one obtains a sequence of MLMC algorithms

(ŜN : N ∈ N) each having cost less than or equal to N and satisfying

err(ŜN) = sup
f∈Lip1

E[(S(f)− ŜN(f))2]1/2 ≤ const


N−1/2, β > 1

N−1/2(logN)1/2, β = 1

N−
α

1+2α−β , β < 1,

where const is a constant only depending on α, β and c.

Conversely: Appropriate classical Monte Carlo algorithms (ŜN : N ∈ N) lead to

err(ŜN) ≤ constN−
α

1+2α .

IV Lévy process X = (Xt)t∈[0,1] (L2-integrable)

Now: MLMC for Lévy-driven stochastic differential equations!

Lévy process: discontinuous extension of the Wiener process in the sense that

I Xt1 , . . . ,Xtn − Xtn−1 are independent (0 ≤ t1 ≤ · · · ≤ tn)
independent increments

I Xt − Xs
L
= Xt−s (0 ≤ s ≤ t)

stationary increments

I X is a.s. càdlàg (right cont. with left hand limits)

Lévy-Itô decompositio: The Lévy process X is a combination of

I a Wiener process, parameterized via its symmetric covariance
ΣΣ∗ ∈ RdX×dX

I a drift, parameterized via the trend b ∈ RdX , and

I a compensated pure jump process (L2-martingale), parameterized via the
jump intensity ν (Lévy measure), a measure on RdX \{0} with∫

|x |2 ν(dx) <∞.

IV Lévy process X = (Xt)t∈[0,1] (L2-integrable)

Now: MLMC for Lévy-driven stochastic differential equations!

Lévy process: discontinuous extension of the Wiener process in the sense that

I Xt1 , . . . ,Xtn − Xtn−1 are independent (0 ≤ t1 ≤ · · · ≤ tn)
independent increments

I Xt − Xs
L
= Xt−s (0 ≤ s ≤ t)

stationary increments

I X is a.s. càdlàg (right cont. with left hand limits)

Lévy-Itô decompositio: The Lévy process X is a combination of

I a Wiener process, parameterized via its symmetric covariance
ΣΣ∗ ∈ RdX×dX

I a drift, parameterized via the trend b ∈ RdX , and

I a compensated pure jump process (L2-martingale), parameterized via the
jump intensity ν (Lévy measure), a measure on RdX \{0} with∫

|x |2 ν(dx) <∞.

IV Lévy driven SDEs

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

a(Ys−) dXs ,

where a : RdY → RdY×dX is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

Xt = ΣWt + bt + Lt

where W is an RdX -dimensional standard Wiener process and L ist the
compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of L are dense in
[0, 1]. One can only simulate the jumps being larger than a threshold and
perfect simulation of increments is typically not feasible!

Idea: Compensate the “small jumps” by a Gaussian correction

(Asmussen, Rosiński ’01)

IV Lévy driven SDEs

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

a(Ys−) dXs ,

where a : RdY → RdY×dX is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

Xt = ΣWt + bt + Lt

where W is an RdX -dimensional standard Wiener process and L ist the
compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of L are dense in
[0, 1]. One can only simulate the jumps being larger than a threshold and
perfect simulation of increments is typically not feasible!

Idea: Compensate the “small jumps” by a Gaussian correction

(Asmussen, Rosiński ’01)

IV Lévy driven SDEs

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

a(Ys−) dXs ,

where a : RdY → RdY×dX is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

Xt = ΣWt + bt + Lt

where W is an RdX -dimensional standard Wiener process and L ist the
compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of L are dense in
[0, 1]. One can only simulate the jumps being larger than a threshold and
perfect simulation of increments is typically not feasible!

Idea: Compensate the “small jumps” by a Gaussian correction

(Asmussen, Rosiński ’01)

IV Lévy driven SDEs

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

a(Ys−) dXs ,

where a : RdY → RdY×dX is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

Xt = ΣWt + bt + Lt

where W is an RdX -dimensional standard Wiener process and L ist the
compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of L are dense in
[0, 1]. One can only simulate the jumps being larger than a threshold and
perfect simulation of increments is typically not feasible!

Idea: Compensate the “small jumps” by a Gaussian correction

(Asmussen, Rosiński ’01)

IV Lévy driven SDEs

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

a(Ys−) dXs ,

where a : RdY → RdY×dX is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

Xt = ΣWt + bt + Lt

where W is an RdX -dimensional standard Wiener process and L ist the
compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of L are dense in
[0, 1]. One can only simulate the jumps being larger than a threshold and
perfect simulation of increments is typically not feasible!

Idea: Compensate the “small jumps” by a Gaussian correction

(Asmussen, Rosiński ’01)

IV Lévy driven SDEs

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

a(Ys−) dXs ,

where a : RdY → RdY×dX is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

Xt = ΣWt + bt + Lt

where W is an RdX -dimensional standard Wiener process and L ist the
compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of L are dense in
[0, 1]. One can only simulate the jumps being larger than a threshold and
perfect simulation of increments is typically not feasible!

Idea: Compensate the “small jumps” by a Gaussian correction

(Asmussen, Rosiński ’01)

IV Approximations for L

Thresholds: We choose thresholds h1 > h2 > · · · > 0 that are small and satisfy

ν(B(0, hk)c) ≤ 2k .

Further, let εk = 2−k .

Point process representation for L:

Lt = L2- lim
h↓0

∫
B(0,h)c×(0,t]

x d(ξ − ν̄)(dx , ds)

where ξ is a Poisson point process with intensity ν̄ = ν ⊗ λ. As approximation
we choose

L(k) =

∫
B(0,hk)

c×(0,t]

x d(ξ − ν̄)(dx , ds)

Joint simulation of two levels L(k), L(k−1): Simulate the restricted point
process ξ|B(0,hk)

c×(0,1] which consists in the average of

ν̄(B(0, hk)c × (0, 1]) =

∫
B(0,hk)

ν(dx)

points.

IV Approximations for L

Thresholds: We choose thresholds h1 > h2 > · · · > 0 that are small and satisfy

ν(B(0, hk)c) ≤ 2k .

Further, let εk = 2−k .

Point process representation for L:

Lt = L2- lim
h↓0

∫
B(0,h)c×(0,t]

x d(ξ − ν̄)(dx , ds)

where ξ is a Poisson point process with intensity ν̄ = ν ⊗ λ. As approximation
we choose

L(k) =

∫
B(0,hk)

c×(0,t]

x d(ξ − ν̄)(dx , ds)

Joint simulation of two levels L(k), L(k−1): Simulate the restricted point
process ξ|B(0,hk)

c×(0,1] which consists in the average of

ν̄(B(0, hk)c × (0, 1]) =

∫
B(0,hk)

ν(dx)

points.

IV Approximations for L

Thresholds: We choose thresholds h1 > h2 > · · · > 0 that are small and satisfy

ν(B(0, hk)c) ≤ 2k .

Further, let εk = 2−k .

Point process representation for L:

Lt = L2- lim
h↓0

∫
B(0,h)c×(0,t]

x d(ξ − ν̄)(dx , ds)

where ξ is a Poisson point process with intensity ν̄ = ν ⊗ λ. As approximation
we choose

L(k) =

∫
B(0,hk)

c×(0,t]

x d(ξ − ν̄)(dx , ds)

Joint simulation of two levels L(k), L(k−1): Simulate the restricted point
process ξ|B(0,hk)

c×(0,1] which consists in the average of

ν̄(B(0, hk)c × (0, 1]) =

∫
B(0,hk)

ν(dx)

points.

IV Euler type approximate solutions

Updates: We denote by Tk the random set of times that contains 0 and 1 and
all times t ∈ (0, 1) with

∆Lt := Lt − Lt− ∈ B(0, hk)c or [t − εk , t) ∩ Tk = {t − εk}

Tk contains all discontinuities of L(k) and further points are added to ensure
that updates are not ore than εk time units apart.

Approximate solutions: we set Y
(k)
0 = y0 and for neighboring times t < t′ in

Tk , we set
Y

(k)
t′ = Y

(k)
t + a(Y

(k)
t)(X

(k)
t′ − X

(k)
t)

where X
(k)
t = Wt + bt + L

(k)
t

IV Visualisation

Simulation of (L(k), L(k−1))

, W and (X (k),X (k−1)).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

compensated jumps greater h

time

L t(h
)

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

compensated jumps greater h

time

L t(h
)

IV Visualisation

Simulation of (L(k), L(k−1))

, W and (X (k),X (k−1)).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

compensated jumps greater h

time

L t(h
)

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

compensated jumps greater h'

time

L t(h
)

IV Visualisation

Simulation of (L(k), L(k−1)), W

and (X (k),X (k−1)).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

Brownian motion

time

W
t

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

Brownian motion for (h',ε')

time

W
t o

n
T

ε '

IV Visualisation

Simulation of (L(k), L(k−1)), W and (X (k),X (k−1)).

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

approximation for (h,ε)

time

X
t(ε

)

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

0.2

approximation for (h',ε')

time

X
t(ε

)

IV Classes of algorithms

Algorithms Ŝ are specified via the parameters:

I m ∈ N : # of levels

I n1, . . . , nm : # of simulations of pairs (Y (k),Y (k−1))

Class A0: (MLMC0, neglect small jumps)
Approximation Y (k) is obtained via Tk -Euler scheme with driving process

X
(k)
t = ΣWt + L

(k)
t + bt,

where L(k) is constituted by the compensated jumps of L larger than hk .

Class A1: (MLMC1, Gaussian compensation)
Approximation Y (k) is obtained via Tk -Euler scheme with driving process

X
(k)
t = ΣWt + Σ(m)Bt + L

(k)
t + bt,

where B is an independent Wiener process and

Σ(m)(Σ(m))∗ =

∫
B(0,hm)

x ⊗ x ν(dx)

IV Classes of algorithms

Algorithms Ŝ are specified via the parameters:

I m ∈ N : # of levels

I n1, . . . , nm : # of simulations of pairs (Y (k),Y (k−1))

Class A0: (MLMC0, neglect small jumps)
Approximation Y (k) is obtained via Tk -Euler scheme with driving process

X
(k)
t = ΣWt + L

(k)
t + bt,

where L(k) is constituted by the compensated jumps of L larger than hk .

Class A1: (MLMC1, Gaussian compensation)
Approximation Y (k) is obtained via Tk -Euler scheme with driving process

X
(k)
t = ΣWt + Σ(m)Bt + L

(k)
t + bt,

where B is an independent Wiener process and

Σ(m)(Σ(m))∗ =

∫
B(0,hm)

x ⊗ x ν(dx)

IV Classes of algorithms

Algorithms Ŝ are specified via the parameters:

I m ∈ N : # of levels

I n1, . . . , nm : # of simulations of pairs (Y (k),Y (k−1))

Class A0: (MLMC0, neglect small jumps)
Approximation Y (k) is obtained via Tk -Euler scheme with driving process

X
(k)
t = ΣWt + L

(k)
t + bt,

where L(k) is constituted by the compensated jumps of L larger than hk .

Class A1: (MLMC1, Gaussian compensation)
Approximation Y (k) is obtained via Tk -Euler scheme with driving process

X
(k)
t = ΣWt + Σ(m)Bt + L

(k)
t + bt,

where B is an independent Wiener process and

Σ(m)(Σ(m))∗ =

∫
B(0,hm)

x ⊗ x ν(dx)

IV Error estimates

We express the asymptotic estimates in terms of the

Blumenthal-Getoor index:

α := inf
{
p > 0 :

∫
B(0,1)

|x |p ν(dx) <∞
}
∈ [0, 2]

Main Result: (D, Heidenreich ’11, D ’11)

For i = 0, 1, there exist multilevel Monte Carlo algorithms {Ŝ i
N : N ∈ N} in Ai

with cost(Ŝ i
N) ≤ N and

err(Ŝ i
N) ≤ N−(1+o(1))ϕi (α)

for

I ϕ0(α) = (1
α
− 1

2
) ∧ 1

2

I ϕ1(α) = 4−α
6α
∧ 1

2
if Σ = 0 or α 6∈ [1, 4

3
]

I ϕ1(α) = α
6α−4

if Σ 6= 0 and α ∈ [1, 4
3
].

Note: The analysis of A1 requires a uniform ellipticity assumption on ν.

IV Error estimates

We express the asymptotic estimates in terms of the

Blumenthal-Getoor index:

α := inf
{
p > 0 :

∫
B(0,1)

|x |p ν(dx) <∞
}
∈ [0, 2]

Main Result: (D, Heidenreich ’11, D ’11)

For i = 0, 1, there exist multilevel Monte Carlo algorithms {Ŝ i
N : N ∈ N} in Ai

with cost(Ŝ i
N) ≤ N and

err(Ŝ i
N) ≤ N−(1+o(1))ϕi (α)

for

I ϕ0(α) = (1
α
− 1

2
) ∧ 1

2

I ϕ1(α) = 4−α
6α
∧ 1

2
if Σ = 0 or α 6∈ [1, 4

3
]

I ϕ1(α) = α
6α−4

if Σ 6= 0 and α ∈ [1, 4
3
].

Note: The analysis of A1 requires a uniform ellipticity assumption on ν.

IV Error estimates

We express the asymptotic estimates in terms of the

Blumenthal-Getoor index:

α := inf
{
p > 0 :

∫
B(0,1)

|x |p ν(dx) <∞
}
∈ [0, 2]

Main Result: (D, Heidenreich ’11, D ’11)

For i = 0, 1, there exist multilevel Monte Carlo algorithms {Ŝ i
N : N ∈ N} in Ai

with cost(Ŝ i
N) ≤ N and

err(Ŝ i
N) ≤ N−(1+o(1))ϕi (α)

for

I ϕ0(α) = (1
α
− 1

2
) ∧ 1

2

I ϕ1(α) = 4−α
6α
∧ 1

2
if Σ = 0 or α 6∈ [1, 4

3
]

I ϕ1(α) = α
6α−4

if Σ 6= 0 and α ∈ [1, 4
3
].

Note: The analysis of A1 requires a uniform ellipticity assumption on ν.

IV Error estimates

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5
Order of convergence

JKMP

JKMP HsymL

MLMC 1 HGL

MLMC 1

MLMC 0

Related work on quadrature of marginals:

I Jacod, Kurtz, Méléard, and Protter ’05

I Tanaka and Kohatsu-Higa ’09

IV Error estimates

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5
Order of convergence

JKMP

JKMP HsymL

MLMC 1 HGL

MLMC 1

MLMC 0

Related work on quadrature of marginals:

I Jacod, Kurtz, Méléard, and Protter ’05

I Tanaka and Kohatsu-Higa ’09

IV Remarks on the proofs

Recall that we need estimates for

(W) W(PY ,PY (m)) (weak approximation)

(S) E[‖Y − Y (k)‖2] (strong approximation)

Proof for class A0:

I Control (S) of Euler scheme (as for classical diffusions)

I This gives also an upper bound for (W).

I Balance errors.

Proof for class A1:

I New estimate for (W) by applying a KMT-like coupling (Zaitsev ’98) for
small jump part, say L′.

Problem: Coupling yields small error in the supremum norm; however this does
not allow to control the error in the differential equation directly.

Remedy: Apply independent couplings on consecutive intervals and ignore the

impact of small jumps at most update times.

IV Remarks on the proofs

Recall that we need estimates for

(W) W(PY ,PY (m)) (weak approximation)

(S) E[‖Y − Y (k)‖2] (strong approximation)

Proof for class A0:

I Control (S) of Euler scheme (as for classical diffusions)

I This gives also an upper bound for (W).

I Balance errors.

Proof for class A1:

I New estimate for (W) by applying a KMT-like coupling (Zaitsev ’98) for
small jump part, say L′.

Problem: Coupling yields small error in the supremum norm; however this does
not allow to control the error in the differential equation directly.

Remedy: Apply independent couplings on consecutive intervals and ignore the

impact of small jumps at most update times.

IV Consequences of Zaitsev’s result (KMT)

Notation:

I L: compensated pure jump process with intensity ν being supported on
B(0, h)

I ΣΣ∗ =
∫
x ⊗ x ν(dx)

I B: Wiener process

Theorem: One can couple (Lt)t∈[0,T] and (ΣBt)t∈[0,T] such that

E[sup
t∈[0,T]

|Lt − ΣBt |2]1/2 ≤ √γh
(
c1 log

(σ2T

h2
∨ e
)

+ c2
)
,

where

I σ2 =
∫
B(0,h)

|x |2 ν(dx) and

I γ ≥ 1 is such that
∫
〈y ′, x〉2 ν(dx) ≤ γ

∫
〈y , x〉2 ν(dx) for |x | = |y | = 1

(→ uniform ellipticity assumption)

Consequence: For quadrature of Lévy processes, one has algorithms
(ŜN : N ∈ N) with

err(ŜN) ≤ constN−(1+o(1)) 1
2α

IV Comments

I Worst case error bounds over the class of Lipschitz functions f w.r.t.
supremum norm

I Weak assumptions on coefficient a

I Explicit representation for thresholds hk in terms of the Lévy measure ν

I Improved rates can be proved if f depends only on marginals

I Numerical implementation have been conducted by F. Heidenreich (TU
Kaiserslautern)

I Information retrieved from Monte Carlo on low levels can be used to
interpolate and to improve the performance.

I One gets fast convergence rates for the quadrature of Lévy processes.

V Numerical experiments

In the numerical test we consider

I a one dimensional Lévy process X with characteristics Σ = b = 0 and

dν

dx
(x) = 1l(0,1](|x |)

0.1

|x |1+α ,

where α ∈ (0, 2) denotes the Blumenthal-Getoor index

I the SDE

Yt = 1 +

∫ t

0

Ys− dXs

I a lookback option with strike 1, that is

f (Y) = (sup
t∈[0,1]

Yt − 1)+.

So far only results for multilevel without Gaussian compensation are available.

V Adaptive choice of m and n1, . . . , nm
Expample of n1, . . . , nm with α = 0.5.

I Precisions δ = (0.003, 0.002, 0.001, 0.0006, 0.0003).

I Highest levels m = (3, 3, 4, 4, 5).

3

4

5

6

level k

lo
g 1

0((n
k))

1 2 3 4 5

●

●

●

●

●

●

●

Replication numbers for αα = 0.5

●

●

precision δδ:

= 0.003
= 0.002
= 0.001
= 6e−04
= 3e−04

V Adaptive choice of m and n1, . . . , nm
Expample of n1, . . . , nm with α = 0.8.

I Precisions δ = (0.01, 0.004, 0.002, 0.001, 0.0007).

I Highest levels m = (4, 5, 6, 7, 7).

2

3

4

5

6

level k

lo
g 1

0((n
k))

1 2 3 4 5 6 7

●

●

●

●

●

●

●

●

●

●

●

●

Replication numbers for αα = 0.8

●

●

precision δδ:

= 0.01
= 0.004
= 0.002
= 0.001
= 7e−04

V Adaptive choice of m and n1, . . . , nm
Expample of n1, . . . , nm with α = 1.2.

I Precisions δ = (0.02, 0.01, 0.007, 0.005, 0.0035).

I Highest levels m = (7, 8, 9, 10, 11).

2.0

2.5

3.0

3.5

4.0

4.5

5.0

level k

lo
g 1

0((n
k))

1 2 3 4 5 6 7 8 9 10 11

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Replication numbers for αα = 1.2

●

●

precision δδ:

= 0.02
= 0.01
= 0.007
= 0.005
= 0.0035

V Error versus cost

4.5 5.0 5.5 6.0 6.5 7.0

−3.5

−3.0

−2.5

−2.0

log10((cost))

lo
g 1

0((e
rr

or
))

●

●

●

●

●

●

●

●

●

●

Error and cost of MLMC and classical MC

= MLMC
= MC

●

αα
= 0.5
= 0.8
= 1.2

V Empirical versus theoretical findings

Comparison of the empirical findings

BG index α 0.5 0.8 1.2

Theoretical order (MLMC) 0.5 0.5 0.33
Empirical order (MLMC) 0.47 0.46 0.38
Empirical order (MC) 0.45 0.34 0.23

V Bias/variance estimates

Problem: The theoretic bias estimates are often too big which means that too
many pairs of levels are included in the multilevel algorithm.

Remedy: The coarse levels have high iteration numbers so that we have good
estimates for

biask := E[f (Y (k))− f (Y (k−1))]

for small k, say for k = 1, . . . , 4. Now we do a linear regression on a log-plot

through the first 4 empirically observed bias estimates and extrapolate on the

biases of the higher levels.

V Bias/variance estimates

Problem: The theoretic bias estimates are often too big which means that too
many pairs of levels are included in the multilevel algorithm.

Remedy: The coarse levels have high iteration numbers so that we have good
estimates for

biask := E[f (Y (k))− f (Y (k−1))]

for small k, say for k = 1, . . . , 4. Now we do a linear regression on a log-plot

through the first 4 empirically observed bias estimates and extrapolate on the

biases of the higher levels.

V Bias/variance estimates

●

●

●

●

−5

−4

−3

−2

−1

level k

lo
g 1

0((b
ia

s k
)) a

nd
 lo

g 1
0((v

ar
k))

1 2 3 4

Bias and variance estimation for αα=0.5

● = bias
= variance

●

●

●

●

●

−2.0

−1.5

−1.0

level k

lo
g 1

0((b
ia

s k
)) a

nd
 lo

g 1
0((v

ar
k))

1 2 3 4 5

Bias and variance estimation for αα=1.2

● = bias
= variance

Main references

J. Creutzig, S. Dereich, Th. Müller-Gronbach and Klaus Ritter,
“Infinite-dimensional quadrature and approximation of distributions”, Found.
Comput. Math. 9(4):391-429 (2009)

S. Dereich, “Multilevel Monte Carlo algorithms for Lévy-driven SDEs with
Gaussian correction”, Ann. Appl. Probab. 21(1):283-311 (2011)

S. Dereich, F. Heidenreich, “A multilevel Monte Carlo algorithm for Lévy driven
stochastic differential equations”, Stochastic Process. Appl. 121(7), 1565-1587
(2011)

M.B. Giles “Multilevel Monte Carlo path simulation”, Operations Research
56(3):607-617 (2008).

Thank you very much for your attention

