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I Introduction

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

b(Ys−)ds +

∫ t

0

a(Ys−) dXs ,

where σ : RdY → RdY×dX and b : RdY → RdY are Lipschitz continuous
C∞-coefficients and X is a Wiener (or more generally a Lévy process).

Quadrature problem: Computation of expectations

S(f ) := E[f (Y )],

where f : D[0, 1]→ R satisfies certain smoothness assumptions (D[0, 1]
denotes the Skorokhod space of càdlàg functions on [0, 1]).

E.g.: f (x) = (
∫ 1

0
xt dt − K)+ or f (x) = maxt∈[0,1] xt
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I Motivation
Approximations: Take a family of approximate solutions {Y (m) : m ∈ N} with
exponentially increasing complexity, for instance Euler with stepsize 2−m.

Classical Monte Carlo:

S(f ) = E[f (Y )] ≈ E[f (Y (m))] ≈ 1

n

n∑
i=1

f (Y (m,i)),

where Y (m,1),Y (m,2), . . . are independent copies of Y (m).

Monte Carlo with extrapolation: (Talay, Tubaro ’90, Bally, Talay ’96)

E[f (Y )] ≈ E[2f (Y (m+1))− f (Y (m))] ≈ 1

n

n∑
i=1

2f (Y (m+1,i))− f (Y (m,i)),

where (Y (m+1,1),Y (m,1)), . . . are independent copies of (Y (m+1),Y (m)).

Approximation error: Typically one gets for non-path dependent options for
classical Monte Carlo

root mean squared error ≈ N−1/3

and for Monte Carlo with extrapolation

root mean squared error ≈ N−2/5

in the computational time N as N →∞.
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I Motivation

Alternatives for approximate soutions: Kusuoka-Lyons-Victoir methods,
splitting methods, . . .

Strong research activity since the 90s with contribution by (e.g.) Kusuoka,
Kohatsu-Higa and many others

Focus of the talk:

I Lower bounds for quadrature problems

II Multilevel methods with a focus on Lévy-driven SDEs

In [I] we will follow the ideas of information based complexity (Novak,
Plaskota, Ritter, Sloan, Wasilkowski, Wozniakowski, . . . ) and specify an
algorithmic problem and provide lower bounds.

In [II] we briefly introduce multilevel Monte Carlo and provide upper bounds for

their efficiency for Lévy-driven SDEs



II Information based complexity point of view
Question: Can one prove lower bounds in the quadrature problem?

We restrict attention to continuous diffusions.

For doing so we need to specify

(a) a class F of functions on which we test the algorithm

(b) the computational cost of algorithms and

(c) an error criterion.

(a): We consider F as the 1-Lipschitz continuous functions f : C [0, 1]→ R
(w.r.t. supremum norm)

(b): Specify a nested sequence {Vn : n ∈ N0} of linear subsets of C [0, 1] with
dimension dim(Vn) = n and charge each evaluation of f for a path
x ∈ Vn\Vn−1 with cost n. All real number operations are allowed.

(c): An algorithm Ŝ produces a possibly random output Ŝ(f ) when applied to
f and we consider the worst-case-error

err(Ŝ) := sup
f∈F

E[(S(f )− Ŝ(f ))2]1/2.

Task: Prove lower bounds for the minimal error

e(N) := inf{err(Ŝ) : cost(Ŝ) ≤ N}.
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f and we consider the worst-case-error
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II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter ’09

Variable subspace sampling:

evariable(N) ≥ constN−1/2

Fixed subspace sampling: Algorithm needs to specify one subspace Vn at first
and sampling is only possible in Vn at cost n.

efixed(N) ≥ constN−1/4 (logN)−3/4

Full space sampling: Algorithm is allowed to sample arbitrarily and each
evaluation of f costs one unit.

efree(N) ≥ constN−1/2(logN)−3/2

Comments: The first two lower bounds are sharp up to logarithms and there
exist algorithms that reach the lower bounds up to logarithms under a
reasonable notion of “cost” (runtime):

I Fixed subspace sampling: classical Monte Carlo with Euler

I Variable subspace sampling: multilevel Monte Carlo with Euler
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II Remarks on the proofs

The proofs are based on

I average Kolmogorov widths of diffusions in V = (C [0, 1], ‖ · ‖∞) that is
the asymptotics of

dn := inf{E[d(Y ,V0)] : V0 ⊂ V , dim(V0) ≤ 2n−1}

I an idea taken from Bakhvalov (’59) for proving lower bounds

I a connection to quantization complexity

Comments:

I General Gaussian measures are included in the analysis

I The results are sharp up to powers of logarithms
 Multilevel Monte Carlo algorithms
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III Multilevel Monte Carlo algorithms

Ref.: Heinrich ’98, Giles ’08

Aim: Computation of S(f ) := E[f (Y )] for an implicit random element Y
attaining values in a normed space (V , ‖ · ‖)
(e.g., Y = (Yt)t∈[0,1] solution of SDE)

Approximate solutions: Y (1),Y (2), . . .
(e.g., Y (k) Euler approximation with step size 2−k)

Classical Monte Carlo: Y ≈ Y (m)

Approximate Y by Y (m) and use Monte Carlo to approximate E[f (Y (m))].

Multilevel scheme: Y ≈ Y (m) ←→ Y (m−1) ←→ . . .←→ Y (2) ←→ Y (1)

Use Monte Carlo to approximate E[f (Y (k))− f (Y (k−1))].

Features: • scheme very efficient for diffusions, Gaussian processes, ...

• often errors of order O(N−1/2)

• in the setting of part II: O(N−1/2(logN)3/2)
• scheme is robust: applicable under weak assumptions,

good performance for discontinuous f
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III The MLMC algorithm

Telescoping sum:

E[f (Y (m))] =
m∑

k=2

E[f (Y (k))− f (Y (k−1))] + E[f (Y (1))].

Approximate each expectation E[f (Y (k))− f (Y (k−1))], resp. E[f (Y (1))],
by nk independent Monte-Carlo simulations.

Output: Ŝ(f ) = sum of the individual random approximations.

Error estimate (mse):

E
[(
S(f )− Ŝ(f )

)2]
=|E[f (Y )]− E[f (Y (m))]|2

+
m∑

k=2

1

nk
var(f (Y (k))− f (Y (k−1))) +

1

n1
var(f (Y (1))).

Advantage: only few of the expensive simulations are necessary.
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III Error estimates on Lip-class

If f is Lipschitz continuous with coefficient one, then

E
[(
S(f )− Ŝ(f )

)2] ≤ W(PY ,PY (m))
2 + const

m∑
k=1

1

nk
E[‖Y − Y (k)‖2],

where W denotes the Wasserstein metric

W(Q1,Q2) = inf
{∫
‖x − y‖ dξ(x , y) : Q1 = π1(ξ),Q2 = π2(ξ)

}

Note: The error estimate does not depend on f and we need estimates for

(W) W(PY ,PY (m)) (weak approximation)

(S) E[‖Y − Y (k)‖2] (strong approximation)
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III Complexity theorem

Assumptions: There exist 0 < β ≤ 2α and a real constant c s.th.

(W) W(PY ,PY (m)) ≤ c(2−m)α

(S) E[‖Y − Y (k)‖2] ≤ c(2−m)β

Further we assign each joint simulation of f (Y (k))− f (Y (k−1)) the cost c 2k .

Theorem: (Giles ’08) Fixing the parameters (highest level m and iteration
numbers n1, . . . , nm) appropriately one obtains a sequence of MLMC algorithms

(ŜN : N ∈ N) each having cost less than or equal to N and satisfying

err(ŜN) = sup
f∈Lip1

E[(S(f )− ŜN(f ))2]1/2 ≤ const


N−1/2, β > 1

N−1/2(logN)1/2, β = 1

N−
α

1+2α−β , β < 1,

where const is a constant only depending on α, β and c.

Conversely: Appropriate classical Monte Carlo algorithms (ŜN : N ∈ N) lead to

err(ŜN) ≤ constN−
α

1+2α .
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IV Lévy process X = (Xt)t∈[0,1] (L2-integrable)

Now: MLMC for Lévy-driven stochastic differential equations!

Lévy process: discontinuous extension of the Wiener process in the sense that

I Xt1 , . . . ,Xtn − Xtn−1 are independent (0 ≤ t1 ≤ · · · ≤ tn)
independent increments

I Xt − Xs
L
= Xt−s (0 ≤ s ≤ t)

stationary increments

I X is a.s. càdlàg (right cont. with left hand limits)

Lévy-Itô decompositio: The Lévy process X is a combination of

I a Wiener process, parameterized via its symmetric covariance
ΣΣ∗ ∈ RdX×dX

I a drift, parameterized via the trend b ∈ RdX , and

I a compensated pure jump process (L2-martingale), parameterized via the
jump intensity ν (Lévy measure), a measure on RdX \{0} with∫

|x |2 ν(dx) <∞.
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IV Lévy driven SDEs

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

a(Ys−) dXs ,

where a : RdY → RdY×dX is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

Xt = ΣWt + bt + Lt

where W is an RdX -dimensional standard Wiener process and L ist the
compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of L are dense in
[0, 1]. One can only simulate the jumps being larger than a threshold and
perfect simulation of increments is typically not feasible!

Idea: Compensate the “small jumps” by a Gaussian correction

(Asmussen, Rosiński ’01)
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IV Lévy driven SDEs

SDE: Y = (Yt)t∈[0,1] solution to

Yt = y0 +

∫ t

0

a(Ys−) dXs ,

where a : RdY → RdY×dX is Lipschitz continuous.
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IV Approximations for L

Thresholds: We choose thresholds h1 > h2 > · · · > 0 that are small and satisfy

ν(B(0, hk)c) ≤ 2k .

Further, let εk = 2−k .

Point process representation for L:

Lt = L2- lim
h↓0

∫
B(0,h)c×(0,t]

x d(ξ − ν̄)(dx , ds)

where ξ is a Poisson point process with intensity ν̄ = ν ⊗ λ. As approximation
we choose

L(k) =

∫
B(0,hk )

c×(0,t]

x d(ξ − ν̄)(dx , ds)

Joint simulation of two levels L(k), L(k−1): Simulate the restricted point
process ξ|B(0,hk )

c×(0,1] which consists in the average of

ν̄(B(0, hk)c × (0, 1]) =

∫
B(0,hk )

ν(dx)

points.
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IV Euler type approximate solutions

Updates: We denote by Tk the random set of times that contains 0 and 1 and
all times t ∈ (0, 1) with

∆Lt := Lt − Lt− ∈ B(0, hk)c or [t − εk , t) ∩ Tk = {t − εk}

Tk contains all discontinuities of L(k) and further points are added to ensure
that updates are not ore than εk time units apart.

Approximate solutions: we set Y
(k)
0 = y0 and for neighboring times t < t′ in

Tk , we set
Y

(k)
t′ = Y

(k)
t + a(Y

(k)
t )(X

(k)
t′ − X

(k)
t )

where X
(k)
t = Wt + bt + L

(k)
t



IV Visualisation

Simulation of (L(k), L(k−1))

, W and (X (k),X (k−1)).
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IV Visualisation

Simulation of (L(k), L(k−1)), W

and (X (k),X (k−1)).
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IV Visualisation

Simulation of (L(k), L(k−1)), W and (X (k),X (k−1)).
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IV Classes of algorithms

Algorithms Ŝ are specified via the parameters:

I m ∈ N : # of levels

I n1, . . . , nm : # of simulations of pairs (Y (k),Y (k−1))

Class A0: (MLMC0, neglect small jumps)
Approximation Y (k) is obtained via Tk -Euler scheme with driving process

X
(k)
t = ΣWt + L

(k)
t + bt,

where L(k) is constituted by the compensated jumps of L larger than hk .

Class A1: (MLMC1, Gaussian compensation)
Approximation Y (k) is obtained via Tk -Euler scheme with driving process

X
(k)
t = ΣWt + Σ(m)Bt + L

(k)
t + bt,

where B is an independent Wiener process and

Σ(m)(Σ(m))∗ =

∫
B(0,hm)

x ⊗ x ν(dx)
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IV Error estimates

We express the asymptotic estimates in terms of the

Blumenthal-Getoor index:

α := inf
{
p > 0 :

∫
B(0,1)

|x |p ν(dx) <∞
}
∈ [0, 2]

Main Result: (D, Heidenreich ’11, D ’11)

For i = 0, 1, there exist multilevel Monte Carlo algorithms {Ŝ i
N : N ∈ N} in Ai

with cost(Ŝ i
N) ≤ N and

err(Ŝ i
N) ≤ N−(1+o(1))ϕi (α)

for

I ϕ0(α) = ( 1
α
− 1

2
) ∧ 1

2

I ϕ1(α) = 4−α
6α
∧ 1

2
if Σ = 0 or α 6∈ [1, 4

3
]

I ϕ1(α) = α
6α−4

if Σ 6= 0 and α ∈ [1, 4
3
].

Note: The analysis of A1 requires a uniform ellipticity assumption on ν.
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IV Remarks on the proofs

Recall that we need estimates for

(W) W(PY ,PY (m)) (weak approximation)

(S) E[‖Y − Y (k)‖2] (strong approximation)

Proof for class A0:

I Control (S) of Euler scheme (as for classical diffusions)

I This gives also an upper bound for (W).

I Balance errors.

Proof for class A1:

I New estimate for (W) by applying a KMT-like coupling (Zaitsev ’98) for
small jump part, say L′.

Problem: Coupling yields small error in the supremum norm; however this does
not allow to control the error in the differential equation directly.

Remedy: Apply independent couplings on consecutive intervals and ignore the

impact of small jumps at most update times.
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IV Consequences of Zaitsev’s result (KMT)

Notation:

I L: compensated pure jump process with intensity ν being supported on
B(0, h)

I ΣΣ∗ =
∫
x ⊗ x ν(dx)

I B: Wiener process

Theorem: One can couple (Lt)t∈[0,T ] and (ΣBt)t∈[0,T ] such that

E[ sup
t∈[0,T ]

|Lt − ΣBt |2]1/2 ≤ √γh
(
c1 log

(σ2T

h2
∨ e
)

+ c2
)
,

where

I σ2 =
∫
B(0,h)

|x |2 ν(dx) and

I γ ≥ 1 is such that
∫
〈y ′, x〉2 ν(dx) ≤ γ

∫
〈y , x〉2 ν(dx) for |x | = |y | = 1

(→ uniform ellipticity assumption)

Consequence: For quadrature of Lévy processes, one has algorithms
(ŜN : N ∈ N) with

err(ŜN) ≤ constN−(1+o(1)) 1
2α



IV Comments

I Worst case error bounds over the class of Lipschitz functions f w.r.t.
supremum norm

I Weak assumptions on coefficient a

I Explicit representation for thresholds hk in terms of the Lévy measure ν

I Improved rates can be proved if f depends only on marginals

I Numerical implementation have been conducted by F. Heidenreich (TU
Kaiserslautern)

I Information retrieved from Monte Carlo on low levels can be used to
interpolate and to improve the performance.

I One gets fast convergence rates for the quadrature of Lévy processes.



V Numerical experiments

In the numerical test we consider

I a one dimensional Lévy process X with characteristics Σ = b = 0 and

dν

dx
(x) = 1l(0,1](|x |)

0.1

|x |1+α ,

where α ∈ (0, 2) denotes the Blumenthal-Getoor index

I the SDE

Yt = 1 +

∫ t

0

Ys− dXs

I a lookback option with strike 1, that is

f (Y ) = ( sup
t∈[0,1]

Yt − 1)+.

So far only results for multilevel without Gaussian compensation are available.



V Adaptive choice of m and n1, . . . , nm
Expample of n1, . . . , nm with α = 0.5.

I Precisions δ = (0.003, 0.002, 0.001, 0.0006, 0.0003).

I Highest levels m = (3, 3, 4, 4, 5).

3

4

5

6

level k

lo
g 1

0((n
k))

1 2 3 4 5

●

●

●

●

●

●

●

Replication numbers for αα = 0.5

●

●

precision δδ:

= 0.003
= 0.002
= 0.001
= 6e−04
= 3e−04



V Adaptive choice of m and n1, . . . , nm
Expample of n1, . . . , nm with α = 0.8.

I Precisions δ = (0.01, 0.004, 0.002, 0.001, 0.0007).

I Highest levels m = (4, 5, 6, 7, 7).
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V Adaptive choice of m and n1, . . . , nm
Expample of n1, . . . , nm with α = 1.2.

I Precisions δ = (0.02, 0.01, 0.007, 0.005, 0.0035).

I Highest levels m = (7, 8, 9, 10, 11).
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V Error versus cost
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V Empirical versus theoretical findings

Comparison of the empirical findings

BG index α 0.5 0.8 1.2

Theoretical order (MLMC) 0.5 0.5 0.33
Empirical order (MLMC) 0.47 0.46 0.38
Empirical order (MC) 0.45 0.34 0.23



V Bias/variance estimates

Problem: The theoretic bias estimates are often too big which means that too
many pairs of levels are included in the multilevel algorithm.

Remedy: The coarse levels have high iteration numbers so that we have good
estimates for

biask := E[f (Y (k))− f (Y (k−1))]

for small k, say for k = 1, . . . , 4. Now we do a linear regression on a log-plot

through the first 4 empirically observed bias estimates and extrapolate on the

biases of the higher levels.
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V Bias/variance estimates
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