Multilevel Monte-Carlo algorithms for Lévy-driven SDE's

Steffen Dereich
U Marburg / WWU Münster
http://www.mathematik.uni-marburg.de/~dereich/

CREST and 4th Ritsumeikan-Florence Workshop, 8/03/2012

Outline of the talk

I Introduction
II The information based complexity point of view
III Multilevel Monte Carlo algorithms
IV Application to Lévy processes
V Numerical experiments

I Introduction

SDE: $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution to

$$
Y_{t}=y_{0}+\int_{0}^{t} b\left(Y_{s-}\right) \mathrm{d} s+\int_{0}^{t} a\left(Y_{s-}\right) \mathrm{d} X_{s},
$$

where $\sigma: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y} \times d_{X}}$ and $b: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y}}$ are Lipschitz continuous C^{∞}-coefficients and X is a Wiener (or more generally a Lévy process).

I Introduction

SDE: $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution to

$$
Y_{t}=y_{0}+\int_{0}^{t} b\left(Y_{s-}\right) \mathrm{d} s+\int_{0}^{t} a\left(Y_{s-}\right) \mathrm{d} X_{s}
$$

where $\sigma: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y} \times d_{X}}$ and $b: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y}}$ are Lipschitz continuous C^{∞}-coefficients and X is a Wiener (or more generally a Lévy process).
Quadrature problem: Computation of expectations

$$
S(f):=\mathbb{E}[f(Y)],
$$

where $f: D[0,1] \rightarrow \mathbb{R}$ satisfies certain smoothness assumptions ($D[0,1]$ denotes the Skorokhod space of càdlàg functions on $[0,1])$.
E.g.: $f(x)=\left(\int_{0}^{1} x_{t} \mathrm{~d} t-K\right)_{+}$or $f(x)=\max _{t \in[0,1]} x_{t}$

I Motivation

Approximations: Take a family of approximate solutions $\left\{Y^{(m)}: m \in \mathbb{N}\right\}$ with exponentially increasing complexity, for instance Euler with stepsize 2^{-m}.

I Motivation

Approximations: Take a family of approximate solutions $\left\{Y^{(m)}: m \in \mathbb{N}\right\}$ with exponentially increasing complexity, for instance Euler with stepsize 2^{-m}.
Classical Monte Carlo:

$$
S(f)=\mathbb{E}[f(Y)] \approx \mathbb{E}\left[f\left(Y^{(m)}\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} f\left(Y^{(m, i)}\right)
$$

where $Y^{(m, 1)}, Y^{(m, 2)}, \ldots$ are independent copies of $Y^{(m)}$.
Monte Carlo with extrapolation: (Talay, Tubaro '90, Bally, Talay '96)

$$
\mathbb{E}[f(Y)] \approx \mathbb{E}\left[2 f\left(Y^{(m+1)}\right)-f\left(Y^{(m)}\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} 2 f\left(Y^{(m+1, i)}\right)-f\left(Y^{(m, i)}\right)
$$

where $\left(Y^{(m+1,1)}, Y^{(m, 1)}\right), \ldots$ are independent copies of $\left(Y^{(m+1)}, Y^{(m)}\right)$.

| Motivation

Approximations: Take a family of approximate solutions $\left\{Y^{(m)}: m \in \mathbb{N}\right\}$ with exponentially increasing complexity, for instance Euler with stepsize 2^{-m}.
Classical Monte Carlo:

$$
S(f)=\mathbb{E}[f(Y)] \approx \mathbb{E}\left[f\left(Y^{(m)}\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} f\left(Y^{(m, i)}\right)
$$

where $Y^{(m, 1)}, Y^{(m, 2)}, \ldots$ are independent copies of $Y^{(m)}$.
Monte Carlo with extrapolation: (Talay, Tubaro '90, Bally, Talay '96)

$$
\mathbb{E}[f(Y)] \approx \mathbb{E}\left[2 f\left(Y^{(m+1)}\right)-f\left(Y^{(m)}\right)\right] \approx \frac{1}{n} \sum_{i=1}^{n} 2 f\left(Y^{(m+1, i)}\right)-f\left(Y^{(m, i)}\right)
$$

where $\left(Y^{(m+1,1)}, Y^{(m, 1)}\right), \ldots$ are independent copies of $\left(Y^{(m+1)}, Y^{(m)}\right)$.
Approximation error: Typically one gets for non-path dependent options for classical Monte Carlo root mean squared error $\approx N^{-1 / 3}$
and for Monte Carlo with extrapolation

$$
\text { root mean squared error } \approx N^{-2 / 5}
$$

in the computational time N as $N \rightarrow \infty$.

| Motivation

Alternatives for approximate soutions: Kusuoka-Lyons-Victoir methods, splitting methods, ...
Strong research activity since the 90 s with contribution by (e.g.) Kusuoka, Kohatsu-Higa and many others
Focus of the talk:
I Lower bounds for quadrature problems
II Multilevel methods with a focus on Lévy-driven SDEs
In [I] we will follow the ideas of information based complexity (Novak, Plaskota, Ritter, Sloan, Wasilkowski, Wozniakowski, ...) and specify an algorithmic problem and provide lower bounds.
In [II] we briefly introduce multilevel Monte Carlo and provide upper bounds for their efficiency for Lévy-driven SDEs

II Information based complexity point of view

Question: Can one prove lower bounds in the quadrature problem?
We restrict attention to continuous diffusions.
For doing so we need to specify
(a) a class \mathcal{F} of functions on which we test the algorithm
(b) the computational cost of algorithms and
(c) an error criterion.

II Information based complexity point of view

Question: Can one prove lower bounds in the quadrature problem?
We restrict attention to continuous diffusions.
For doing so we need to specify
(a) a class \mathcal{F} of functions on which we test the algorithm
(b) the computational cost of algorithms and
(c) an error criterion.
(a): We consider \mathcal{F} as the 1 -Lipschitz continuous functions $f: C[0,1] \rightarrow \mathbb{R}$ (w.r.t. supremum norm)
(b): Specify a nested sequence $\left\{V_{n}: n \in \mathbb{N}_{0}\right\}$ of linear subsets of $C[0,1]$ with dimension $\operatorname{dim}\left(V_{n}\right)=n$ and charge each evaluation of f for a path $x \in V_{n} \backslash V_{n-1}$ with cost n. All real number operations are allowed.
(c): An algorithm $\widehat{\mathcal{S}}$ produces a possibly random output $\widehat{S}(f)$ when applied to f and we consider the worst-case-error

$$
\operatorname{err}(\widehat{\mathcal{S}}):=\sup _{f \in \mathcal{F}} \mathbf{E}\left[(S(f)-\widehat{S}(f))^{2}\right]^{1 / 2}
$$

II Information based complexity point of view

Question: Can one prove lower bounds in the quadrature problem?
We restrict attention to continuous diffusions.
For doing so we need to specify
(a) a class \mathcal{F} of functions on which we test the algorithm
(b) the computational cost of algorithms and
(c) an error criterion.
(a): We consider \mathcal{F} as the 1-Lipschitz continuous functions $f: C[0,1] \rightarrow \mathbb{R}$ (w.r.t. supremum norm)
(b): Specify a nested sequence $\left\{V_{n}: n \in \mathbb{N}_{0}\right\}$ of linear subsets of $C[0,1]$ with dimension $\operatorname{dim}\left(V_{n}\right)=n$ and charge each evaluation of f for a path $x \in V_{n} \backslash V_{n-1}$ with cost n. All real number operations are allowed.
(c): An algorithm $\widehat{\mathcal{S}}$ produces a possibly random output $\widehat{S}(f)$ when applied to f and we consider the worst-case-error

$$
\operatorname{err}(\widehat{\mathcal{S}}):=\sup _{f \in \mathcal{F}} \mathbf{E}\left[(S(f)-\widehat{S}(f))^{2}\right]^{1 / 2}
$$

Task: Prove lower bounds for the minimal error

$$
e(N):=\inf \{\operatorname{err}(\widehat{\mathcal{S}}): \operatorname{cost}(\widehat{\mathcal{S}}) \leq N\}
$$

II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter '09
Variable subspace sampling:

$$
e^{\text {variable }}(N) \geq \text { const } N^{-1 / 2}
$$

II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter '09
Variable subspace sampling:

$$
e^{\text {variable }}(N) \geq \text { const } N^{-1 / 2}
$$

Fixed subspace sampling: Algorithm needs to specify one subspace V_{n} at first and sampling is only possible in V_{n} at cost n.

$$
e^{\text {fixed }}(N) \geq \operatorname{const} N^{-1 / 4}(\log N)^{-3 / 4}
$$

II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter '09
Variable subspace sampling:

$$
e^{\text {variable }}(N) \geq \text { const } N^{-1 / 2}
$$

Fixed subspace sampling: Algorithm needs to specify one subspace V_{n} at first and sampling is only possible in V_{n} at cost n.

$$
e^{\mathrm{fixed}}(N) \geq \operatorname{const} N^{-1 / 4}(\log N)^{-3 / 4}
$$

Full space sampling: Algorithm is allowed to sample arbitrarily and each evaluation of f costs one unit.

$$
e^{\text {free }}(N) \geq \mathrm{const} N^{-1 / 2}(\log N)^{-3 / 2}
$$

II Comparison of algorithmic concepts

Ref.: Creutzig, D, Müller-Gronbach, Ritter '09
Variable subspace sampling:

$$
e^{\text {variable }}(N) \geq \text { const } N^{-1 / 2}
$$

Fixed subspace sampling: Algorithm needs to specify one subspace V_{n} at first and sampling is only possible in V_{n} at cost n.

$$
e^{\mathrm{fixed}}(N) \geq \operatorname{const} N^{-1 / 4}(\log N)^{-3 / 4}
$$

Full space sampling: Algorithm is allowed to sample arbitrarily and each evaluation of f costs one unit.

$$
e^{\text {free }}(N) \geq \mathrm{const} N^{-1 / 2}(\log N)^{-3 / 2}
$$

Comments: The first two lower bounds are sharp up to logarithms and there exist algorithms that reach the lower bounds up to logarithms under a reasonable notion of "cost" (runtime):

- Fixed subspace sampling: classical Monte Carlo with Euler
- Variable subspace sampling: multilevel Monte Carlo with Euler

II Remarks on the proofs

The proofs are based on

- average Kolmogorov widths of diffusions in $V=\left(C[0,1],\|\cdot\|_{\infty}\right)$ that is the asymptotics of

$$
d_{n}:=\inf \left\{\mathbb{E}\left[d\left(Y, V_{0}\right)\right]: V_{0} \subset V, \operatorname{dim}\left(V_{0}\right) \leq 2^{n-1}\right\}
$$

- an idea taken from Bakhvalov ('59) for proving lower bounds
- a connection to quantization complexity

II Remarks on the proofs

The proofs are based on

- average Kolmogorov widths of diffusions in $V=\left(C[0,1],\|\cdot\|_{\infty}\right)$ that is the asymptotics of

$$
d_{n}:=\inf \left\{\mathbb{E}\left[d\left(Y, V_{0}\right)\right]: V_{0} \subset V, \operatorname{dim}\left(V_{0}\right) \leq 2^{n-1}\right\}
$$

- an idea taken from Bakhvalov ('59) for proving lower bounds
- a connection to quantization complexity

Comments:

- General Gaussian measures are included in the analysis
- The results are sharp up to powers of logarithms \rightsquigarrow Multilevel Monte Carlo algorithms

III Multilevel Monte Carlo algorithms

Ref.: Heinrich '98, Giles '08
Aim: Computation of $S(f):=\mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V,\|\cdot\|)$ (e.g., $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution of SDE)

III Multilevel Monte Carlo algorithms

Ref.: Heinrich '98, Giles '08
Aim: Computation of $S(f):=\mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V,\|\cdot\|)$ (e.g., $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution of SDE)

Approximate solutions: $Y^{(1)}, Y^{(2)}, \ldots$
(e.g., $Y^{(k)}$ Euler approximation with step size 2^{-k})

III Multilevel Monte Carlo algorithms

Ref.: Heinrich '98, Giles '08
Aim: Computation of $S(f):=\mathbb{E}[f(Y)]$ for an implicit random element Y
attaining values in a normed space $(V,\|\cdot\|)$
(e.g., $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution of SDE)

Approximate solutions: $Y^{(1)}, Y^{(2)}, \ldots$
(e.g., $Y^{(k)}$ Euler approximation with step size 2^{-k})

Classical Monte Carlo: $Y \approx Y^{(m)}$ Approximate Y by $Y^{(m)}$ and use Monte Carlo to approximate $\mathbb{E}\left[f\left(Y^{(m)}\right)\right]$.

III Multilevel Monte Carlo algorithms

Ref.: Heinrich '98, Giles '08
Aim: Computation of $S(f):=\mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V,\|\cdot\|)$ (e.g., $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution of SDE)

Approximate solutions: $Y^{(1)}, Y^{(2)}, \ldots$
(e.g., $Y^{(k)}$ Euler approximation with step size 2^{-k})

Classical Monte Carlo: $Y \approx Y^{(m)}$ Approximate Y by $Y^{(m)}$ and use Monte Carlo to approximate $\mathbb{E}\left[f\left(Y^{(m)}\right)\right]$.
Multilevel scheme: $Y \approx Y^{(m)} \longleftrightarrow Y^{(m-1)} \longleftrightarrow \ldots \longleftrightarrow Y^{(2)} \longleftrightarrow Y^{(1)}$
Use Monte Carlo to approximate $\mathbb{E}\left[f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)\right]$.

III Multilevel Monte Carlo algorithms

Ref.: Heinrich '98, Giles '08
Aim: Computation of $S(f):=\mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V,\|\cdot\|)$ (e.g., $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution of SDE)

Approximate solutions: $Y^{(1)}, Y^{(2)}, \ldots$
(e.g., $Y^{(k)}$ Euler approximation with step size 2^{-k})

Classical Monte Carlo: $Y \approx Y^{(m)}$ Approximate Y by $Y^{(m)}$ and use Monte Carlo to approximate $\mathbb{E}\left[f\left(Y^{(m)}\right)\right]$.

Multilevel scheme: $Y \approx Y^{(m)} \longleftrightarrow Y^{(m-1)} \longleftrightarrow \ldots \longleftrightarrow Y^{(2)} \longleftrightarrow Y^{(1)}$
Use Monte Carlo to approximate $\mathbb{E}\left[f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)\right]$.
Features: - scheme very efficient for diffusions, Gaussian processes, ...

- often errors of order $\mathcal{O}\left(N^{-1 / 2}\right)$
- in the setting of part II: $\mathcal{O}\left(N^{-1 / 2}(\log N)^{3 / 2}\right)$
- scheme is robust: applicable under weak assumptions, good performance for discontinuous f

III The MLMC algorithm

Telescoping sum:

$$
\mathbb{E}\left[f\left(Y^{(m)}\right)\right]=\sum_{k=2}^{m} \mathbb{E}\left[f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)\right]+\mathbb{E}\left[f\left(Y^{(1)}\right)\right]
$$

Approximate each expectation $\mathbb{E}\left[f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)\right]$, resp. $\mathbb{E}\left[f\left(Y^{(1)}\right)\right]$, by n_{k} independent Monte-Carlo simulations.
Output: $\widehat{S}(f)=$ sum of the individual random approximations.

III The MLMC algorithm

Telescoping sum:

$$
\mathbb{E}\left[f\left(Y^{(m)}\right)\right]=\sum_{k=2}^{m} \mathbb{E}\left[f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)\right]+\mathbb{E}\left[f\left(Y^{(1)}\right)\right]
$$

Approximate each expectation $\mathbb{E}\left[f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)\right]$, resp. $\mathbb{E}\left[f\left(Y^{(1)}\right)\right]$, by n_{k} independent Monte-Carlo simulations.
Output: $\widehat{S}(f)=$ sum of the individual random approximations.
Error estimate (mse):

$$
\begin{aligned}
\mathbb{E}\left[(S(f)-\widehat{S}(f))^{2}\right]= & \left|\mathbb{E}[f(Y)]-\mathbb{E}\left[f\left(Y^{(m)}\right)\right]\right|^{2} \\
& +\sum_{k=2}^{m} \frac{1}{n_{k}} \operatorname{var}\left(f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)\right)+\frac{1}{n_{1}} \operatorname{var}\left(f\left(Y^{(1)}\right)\right) .
\end{aligned}
$$

Advantage: only few of the expensive simulations are necessary.

III Error estimates on Lip-class

If f is Lipschitz continuous with coefficient one, then

$$
\mathbb{E}\left[(S(f)-\widehat{S}(f))^{2}\right] \leq \mathcal{W}\left(\mathbb{P}_{Y}, \mathbb{P}_{Y(m)}\right)^{2}+\text { const } \sum_{k=1}^{m} \frac{1}{n_{k}} \mathbb{E}\left[\left\|Y-Y^{(k)}\right\|^{2}\right]
$$

where \mathcal{W} denotes the Wasserstein metric

$$
\mathcal{W}\left(Q_{1}, Q_{2}\right)=\inf \left\{\int\|x-y\| \mathrm{d} \xi(x, y): Q_{1}=\pi_{1}(\xi), Q_{2}=\pi_{2}(\xi)\right\}
$$

III Error estimates on Lip-class

If f is Lipschitz continuous with coefficient one, then

$$
\mathbb{E}\left[(S(f)-\widehat{S}(f))^{2}\right] \leq \mathcal{W}\left(\mathbb{P}_{Y}, \mathbb{P}_{Y^{(m)}}\right)^{2}+\text { const } \sum_{k=1}^{m} \frac{1}{n_{k}} \mathbb{E}\left[\left\|Y-Y^{(k)}\right\|^{2}\right]
$$

where \mathcal{W} denotes the Wasserstein metric

$$
\mathcal{W}\left(Q_{1}, Q_{2}\right)=\inf \left\{\int\|x-y\| \mathrm{d} \xi(x, y): Q_{1}=\pi_{1}(\xi), Q_{2}=\pi_{2}(\xi)\right\}
$$

Note: The error estimate does not depend on f and we need estimates for (W) $\mathcal{W}\left(\mathbb{P}_{Y}, \mathbb{P}_{Y(m)}\right)$ (weak approximation)
(S) $\mathbb{E}\left[\left\|Y-Y^{(k)}\right\|^{2}\right]$ (strong approximation)

III Complexity theorem

Assumptions: There exist $0<\beta \leq 2 \alpha$ and a real constant c s.th.
(W) $\mathcal{W}\left(\mathbb{P}_{Y}, \mathbb{P}_{Y(m)}\right) \leq c\left(2^{-m}\right)^{\alpha}$
(S) $\mathbb{E}\left[\left\|Y-Y^{(k)}\right\|^{2}\right] \leq c\left(2^{-m}\right)^{\beta}$

Further we assign each joint simulation of $f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)$ the cost $c 2^{k}$.

III Complexity theorem

Assumptions: There exist $0<\beta \leq 2 \alpha$ and a real constant c s.th.
(W) $\mathcal{W}\left(\mathbb{P}_{Y}, \mathbb{P}_{Y(m)}\right) \leq c\left(2^{-m}\right)^{\alpha}$
(S) $\mathbb{E}\left[\left\|Y-Y^{(k)}\right\|^{2}\right] \leq c\left(2^{-m}\right)^{\beta}$

Further we assign each joint simulation of $f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)$ the cost $c 2^{k}$.
Theorem: (Giles '08) Fixing the parameters (highest level m and iteration numbers n_{1}, \ldots, n_{m}) appropriately one obtains a sequence of MLMC algorithms $\left(\widehat{\mathcal{S}}_{N}: N \in \mathbb{N}\right)$ each having cost less than or equal to N and satisfying

$$
\operatorname{err}\left(\widehat{\mathcal{S}}_{N}\right)=\sup _{f \in \operatorname{Lip}_{1}} \mathbf{E}\left[\left(S(f)-\widehat{S}_{N}(f)\right)^{2}\right]^{1 / 2} \leq \mathrm{const} \begin{cases}N^{-1 / 2}, & \beta>1 \\ N^{-1 / 2}(\log N)^{1 / 2}, & \beta=1 \\ N^{-\frac{\alpha}{1+2 \alpha-\beta}}, & \beta<1\end{cases}
$$

where const is a constant only depending on α, β and c.

III Complexity theorem

Assumptions: There exist $0<\beta \leq 2 \alpha$ and a real constant c s.th.
(W) $\mathcal{W}\left(\mathbb{P}_{Y}, \mathbb{P}_{Y(m)}\right) \leq c\left(2^{-m}\right)^{\alpha}$
(S) $\mathbb{E}\left[\left\|Y-Y^{(k)}\right\|^{2}\right] \leq c\left(2^{-m}\right)^{\beta}$

Further we assign each joint simulation of $f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)$ the cost $c 2^{k}$.
Theorem: (Giles '08) Fixing the parameters (highest level m and iteration numbers n_{1}, \ldots, n_{m}) appropriately one obtains a sequence of MLMC algorithms $\left(\widehat{\mathcal{S}}_{N}: N \in \mathbb{N}\right)$ each having cost less than or equal to N and satisfying

$$
\operatorname{err}\left(\widehat{\mathcal{S}}_{N}\right)=\sup _{f \in \operatorname{Lip}_{1}} \mathbf{E}\left[\left(S(f)-\widehat{S}_{N}(f)\right)^{2}\right]^{1 / 2} \leq \mathrm{const} \begin{cases}N^{-1 / 2}, & \beta>1 \\ N^{-1 / 2}(\log N)^{1 / 2}, & \beta=1 \\ N^{-\frac{\alpha}{1+2 \alpha-\beta}}, & \beta<1\end{cases}
$$

where const is a constant only depending on α, β and c.
Conversely: Appropriate classical Monte Carlo algorithms $\left(\widehat{\mathcal{S}}_{N}: N \in \mathbb{N}\right)$ lead to

$$
\operatorname{err}\left(\widehat{\mathcal{S}}_{N}\right) \leq \operatorname{const} N^{-\frac{\alpha}{1+2 \alpha}}
$$

IV Lévy process $X=\left(X_{t}\right)_{t \in[0,1]}$ (L2 -integrable)

Now: MLMC for Lévy-driven stochastic differential equations!
Lévy process: discontinuous extension of the Wiener process in the sense that

- $X_{t_{1}}, \ldots, X_{t_{n}}-X_{t_{n-1}}$ are independent $\left(0 \leq t_{1} \leq \cdots \leq t_{n}\right)$ independent increments
- $X_{t}-X_{s} \stackrel{\mathcal{L}}{=} X_{t-s}(0 \leq s \leq t)$ stationary increments
- X is a.s. càdlàg (right cont. with left hand limits)

IV Lévy process $X=\left(X_{t}\right)_{t \in[0,1]}$ (L^{2}-integrable)

Now: MLMC for Lévy-driven stochastic differential equations!
Lévy process: discontinuous extension of the Wiener process in the sense that

- $X_{t_{1}}, \ldots, X_{t_{n}}-X_{t_{n-1}}$ are independent $\left(0 \leq t_{1} \leq \cdots \leq t_{n}\right)$ independent increments
- $X_{t}-X_{s} \stackrel{\mathcal{L}}{=} X_{t-s}(0 \leq s \leq t)$ stationary increments
- X is a.s. càdlàg (right cont. with left hand limits)

Lévy-Itô decompositio: The Lévy process X is a combination of

- a Wiener process, parameterized via its symmetric covariance $\Sigma \Sigma^{*} \in \mathbb{R}^{d_{x} \times d_{x}}$
- a drift, parameterized via the trend $b \in \mathbb{R}^{d_{x}}$, and
- a compensated pure jump process (L^{2}-martingale), parameterized via the jump intensity ν (Lévy measure), a measure on $\mathbb{R}^{d_{x}} \backslash\{0\}$ with

$$
\int|x|^{2} \nu(\mathrm{~d} x)<\infty
$$

IV Lévy driven SDEs

SDE: $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution to

$$
Y_{t}=y_{0}+\int_{0}^{t} a\left(Y_{s-}\right) \mathrm{d} X_{s},
$$

where $a: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y} \times d_{X}}$ is Lipschitz continuous.
Simulation of Lévy processes is based on the Lévy-Itô decomposition:

$$
X_{t}=\Sigma W_{t}+b t+L_{t}
$$

where W is an $\mathbb{R}^{d x}$-dimensional standard Wiener process and L ist the compensated pure jump part.

IV Lévy driven SDEs

SDE: $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution to

$$
Y_{t}=y_{0}+\int_{0}^{t} a\left(Y_{s-}\right) \mathrm{d} X_{s},
$$

where $a: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y} \times d_{X}}$ is Lipschitz continuous.
Simulation of Lévy processes is based on the Lévy-Itô decomposition:

$$
X_{t}=\Sigma W_{t}+b t+L_{t}
$$

where W is an $\mathbb{R}^{d_{X}}$-dimensional standard Wiener process and L ist the compensated pure jump part.

IV Lévy driven SDEs

SDE: $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution to

$$
Y_{t}=y_{0}+\int_{0}^{t} a\left(Y_{s-}\right) \mathrm{d} X_{s},
$$

where $a: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y} \times d_{X}}$ is Lipschitz continuous.
Simulation of Lévy processes is based on the Lévy-Itô decomposition:

$$
X_{t}=\Sigma W_{t}+b t+L_{t}
$$

where W is an $\mathbb{R}^{d x}$-dimensional standard Wiener process and L ist the compensated pure jump part.

IV Lévy driven SDEs

SDE: $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution to

$$
Y_{t}=y_{0}+\int_{0}^{t} a\left(Y_{s-}\right) \mathrm{d} X_{s},
$$

where $a: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y} \times d_{X}}$ is Lipschitz continuous.
Simulation of Lévy processes is based on the Lévy-Itô decomposition:

$$
X_{t}=\Sigma W_{t}+b t+L_{t}
$$

where W is an $\mathbb{R}^{d x}$-dimensional standard Wiener process and L ist the compensated pure jump part.

IV Lévy driven SDEs

SDE: $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution to

$$
Y_{t}=y_{0}+\int_{0}^{t} a\left(Y_{s-}\right) \mathrm{d} X_{s}
$$

where $a: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y} \times d_{X}}$ is Lipschitz continuous.
Simulation of Lévy processes is based on the Lévy-Itô decomposition:

$$
X_{t}=\Sigma W_{t}+b t+L_{t}
$$

where W is an $\mathbb{R}^{d_{X}}$-dimensional standard Wiener process and L ist the compensated pure jump part.
Problem: If ν is an infinite measure, then the discontinuities of L are dense in $[0,1]$. One can only simulate the jumps being larger than a threshold and perfect simulation of increments is typically not feasible!

IV Lévy driven SDEs

SDE: $Y=\left(Y_{t}\right)_{t \in[0,1]}$ solution to

$$
Y_{t}=y_{0}+\int_{0}^{t} a\left(Y_{s-}\right) \mathrm{d} X_{s}
$$

where $a: \mathbb{R}^{d_{Y}} \rightarrow \mathbb{R}^{d_{Y} \times d_{X}}$ is Lipschitz continuous.
Simulation of Lévy processes is based on the Lévy-Itô decomposition:

$$
X_{t}=\Sigma W_{t}+b t+L_{t}
$$

where W is an $\mathbb{R}^{d_{X}}$-dimensional standard Wiener process and L ist the compensated pure jump part.
Problem: If ν is an infinite measure, then the discontinuities of L are dense in $[0,1]$. One can only simulate the jumps being larger than a threshold and perfect simulation of increments is typically not feasible!
Idea: Compensate the "small jumps" by a Gaussian correction (Asmussen, Rosiński '01)

IV Approximations for L

Thresholds: We choose thresholds $h_{1}>h_{2}>\cdots>0$ that are small and satisfy

$$
\nu\left(B\left(0, h_{k}\right)^{c}\right) \leq 2^{k}
$$

Further, let $\varepsilon_{k}=2^{-k}$.

IV Approximations for L

Thresholds: We choose thresholds $h_{1}>h_{2}>\cdots>0$ that are small and satisfy

$$
\nu\left(B\left(0, h_{k}\right)^{c}\right) \leq 2^{k}
$$

Further, let $\varepsilon_{k}=2^{-k}$.
Point process representation for L :

$$
L_{t}=L^{2}-\lim _{h \downarrow 0} \int_{B(0, h)^{c} \times(0, t]} x \mathrm{~d}(\xi-\bar{\nu})(\mathrm{d} x, \mathrm{~d} s)
$$

where ξ is a Poisson point process with intensity $\bar{\nu}=\nu \otimes \lambda$. As approximation we choose

$$
L^{(k)}=\int_{B\left(0, h_{k}\right)^{c} \times(0, t]} x \mathrm{~d}(\xi-\bar{\nu})(\mathrm{d} x, \mathrm{~d} s)
$$

IV Approximations for L

Thresholds: We choose thresholds $h_{1}>h_{2}>\cdots>0$ that are small and satisfy

$$
\nu\left(B\left(0, h_{k}\right)^{c}\right) \leq 2^{k}
$$

Further, let $\varepsilon_{k}=2^{-k}$.
Point process representation for L :

$$
L_{t}=L^{2}-\lim _{h \downarrow 0} \int_{B(0, h)^{c} \times(0, t]} x \mathrm{~d}(\xi-\bar{\nu})(\mathrm{d} x, \mathrm{~d} s)
$$

where ξ is a Poisson point process with intensity $\bar{\nu}=\nu \otimes \lambda$. As approximation we choose

$$
L^{(k)}=\int_{B\left(0, h_{k}\right)^{c} \times(0, t]} x \mathrm{~d}(\xi-\bar{\nu})(\mathrm{d} x, \mathrm{~d} s)
$$

Joint simulation of two levels $L^{(k)}, L^{(k-1)}$: Simulate the restricted point process $\left.\xi\right|_{B\left(0, h_{k}\right)^{c} \times(0,1]}$ which consists in the average of

$$
\bar{\nu}\left(B\left(0, h_{k}\right)^{c} \times(0,1]\right)=\int_{B\left(0, h_{k}\right)} \nu(\mathrm{d} x)
$$

points.

IV Euler type approximate solutions

Updates: We denote by \mathbb{T}_{k} the random set of times that contains 0 and 1 and all times $t \in(0,1)$ with

$$
\Delta L_{t}:=L_{t}-L_{t-} \in B\left(0, h_{k}\right)^{c} \text { or }\left[t-\varepsilon_{k}, t\right) \cap \mathbb{T}_{k}=\left\{t-\varepsilon_{k}\right\}
$$

\mathbb{T}_{k} contains all discontinuities of $L^{(k)}$ and further points are added to ensure that updates are not ore than ε_{k} time units apart.
Approximate solutions: we set $Y_{0}^{(k)}=y_{0}$ and for neighboring times $t<t^{\prime}$ in \mathbb{T}_{k}, we set

$$
Y_{t^{\prime}}^{(k)}=Y_{t}^{(k)}+a\left(Y_{t}^{(k)}\right)\left(X_{t^{\prime}}^{(k)}-X_{t}^{(k)}\right)
$$

where $X_{t}^{(k)}=W_{t}+b t+L_{t}^{(k)}$

IV Visualisation

Simulation of $\left(L^{(k)}, L^{(k-1)}\right)$
compensated jumps greater h

compensated jumps greater h

IV Visualisation

Simulation of $\left(L^{(k)}, L^{(k-1)}\right)$
compensated jumps greater h

compensated jumps greater h^{\prime}

IV Visualisation

Simulation of $\left(L^{(k)}, L^{(k-1)}\right), W$

Brownian motion

Brownian motion for ($h^{\prime}, \varepsilon^{\prime}$)

IV Visualisation

Simulation of $\left(L^{(k)}, L^{(k-1)}\right), W$ and $\left(X^{(k)}, X^{(k-1)}\right)$.

IV Classes of algorithms

Algorithms $\widehat{\mathcal{S}}$ are specified via the parameters:

- $m \in \mathbb{N}: \#$ of levels
- n_{1}, \ldots, n_{m} : \# of simulations of pairs $\left(Y^{(k)}, Y^{(k-1)}\right)$

IV Classes of algorithms

Algorithms $\widehat{\mathcal{S}}$ are specified via the parameters:

- $m \in \mathbb{N}$: \# of levels
- n_{1}, \ldots, n_{m} : \# of simulations of pairs $\left(Y^{(k)}, Y^{(k-1)}\right)$

Class \mathcal{A}_{0} : (MLMC0, neglect small jumps)
Approximation $Y^{(k)}$ is obtained via \mathbb{T}_{k}-Euler scheme with driving process

$$
X_{t}^{(k)}=\Sigma W_{t}+L_{t}^{(k)}+b t,
$$

where $L^{(k)}$ is constituted by the compensated jumps of L larger than h_{k}.

IV Classes of algorithms

Algorithms $\widehat{\mathcal{S}}$ are specified via the parameters:

- $m \in \mathbb{N}$: \# of levels
- n_{1}, \ldots, n_{m} : \# of simulations of pairs $\left(Y^{(k)}, Y^{(k-1)}\right)$

Class \mathcal{A}_{0} : (MLMC0, neglect small jumps)
Approximation $Y^{(k)}$ is obtained via \mathbb{T}_{k}-Euler scheme with driving process

$$
X_{t}^{(k)}=\Sigma W_{t}+L_{t}^{(k)}+b t,
$$

where $L^{(k)}$ is constituted by the compensated jumps of L larger than h_{k}.
Class \mathcal{A}_{1} : (MLMC1, Gaussian compensation)
Approximation $Y^{(k)}$ is obtained via \mathbb{T}_{k}-Euler scheme with driving process

$$
X_{t}^{(k)}=\Sigma W_{t}+\Sigma^{(m)} B_{t}+L_{t}^{(k)}+b t,
$$

where B is an independent Wiener process and

$$
\Sigma^{(m)}\left(\Sigma^{(m)}\right)^{*}=\int_{B\left(0, h_{m}\right)} x \otimes x \nu(\mathrm{~d} x)
$$

IV Error estimates

We express the asymptotic estimates in terms of the Blumenthal-Getoor index:

$$
\alpha:=\inf \left\{p>0: \int_{B(0,1)}|x|^{p} \nu(\mathrm{~d} x)<\infty\right\} \in[0,2]
$$

IV Error estimates

We express the asymptotic estimates in terms of the Blumenthal-Getoor index:

$$
\alpha:=\inf \left\{p>0: \int_{B(0,1)}|x|^{p} \nu(\mathrm{~d} x)<\infty\right\} \in[0,2]
$$

Main Result: (D, Heidenreich '11, D '11) For $i=0,1$, there exist multilevel Monte Carlo algorithms $\left\{\widehat{\mathcal{S}}_{N}^{i}: N \in \mathbb{N}\right\}$ in \mathcal{A}_{i} with $\operatorname{cost}\left(\widehat{\mathcal{S}}_{N}^{i}\right) \leq N$ and

$$
\operatorname{err}\left(\widehat{\mathcal{S}}_{N}^{i}\right) \leq N^{-(1+o(1)) \varphi_{i}(\alpha)}
$$

IV Error estimates

We express the asymptotic estimates in terms of the Blumenthal-Getoor index:

$$
\alpha:=\inf \left\{p>0: \int_{B(0,1)}|x|^{p} \nu(\mathrm{~d} x)<\infty\right\} \in[0,2]
$$

Main Result: (D, Heidenreich '11, D '11) For $i=0,1$, there exist multilevel Monte Carlo algorithms $\left\{\widehat{\mathcal{S}}_{N}^{i}: N \in \mathbb{N}\right\}$ in \mathcal{A}_{i} with $\operatorname{cost}\left(\widehat{\mathcal{S}}_{N}^{i}\right) \leq N$ and

$$
\operatorname{err}\left(\widehat{\mathcal{S}}_{N}^{i}\right) \leq N^{-(1+o(1)) \varphi_{i}(\alpha)}
$$

for

- $\varphi_{0}(\alpha)=\left(\frac{1}{\alpha}-\frac{1}{2}\right) \wedge \frac{1}{2}$
- $\varphi_{1}(\alpha)=\frac{4-\alpha}{6 \alpha} \wedge \frac{1}{2}$ if $\Sigma=0$ or $\alpha \notin\left[1, \frac{4}{3}\right]$
- $\varphi_{1}(\alpha)=\frac{\alpha}{6 \alpha-4}$ if $\Sigma \neq 0$ and $\alpha \in\left[1, \frac{4}{3}\right]$.

Note: The analysis of \mathcal{A}_{1} requires a uniform ellipticity assumption on ν.

IV Error estimates

Order of convergence

IV Error estimates

Order of convergence

Related work on quadrature of marginals:

- Jacod, Kurtz, Méléard, and Protter '05
- Tanaka and Kohatsu-Higa '09

IV Remarks on the proofs

Recall that we need estimates for
(W) $\mathcal{W}\left(\mathbb{P}_{Y}, \mathbb{P}_{Y^{(m)}}\right)$ (weak approximation)
(S) $\mathbb{E}\left[\left\|Y-Y^{(k)}\right\|^{2}\right]$ (strong approximation)

Proof for class \mathcal{A}_{0} :

- Control (S) of Euler scheme (as for classical diffusions)
- This gives also an upper bound for (W).
- Balance errors.

IV Remarks on the proofs

Recall that we need estimates for
(W) $\mathcal{W}\left(\mathbb{P}_{Y}, \mathbb{P}_{Y^{(m)}}\right)$ (weak approximation)
(S) $\mathbb{E}\left[\left\|Y-Y^{(k)}\right\|^{2}\right]$ (strong approximation)

Proof for class \mathcal{A}_{0} :

- Control (S) of Euler scheme (as for classical diffusions)
- This gives also an upper bound for (W).
- Balance errors.

Proof for class \mathcal{A}_{1} :

- New estimate for (W) by applying a KMT-like coupling (Zaitsev '98) for small jump part, say L^{\prime}.

Problem: Coupling yields small error in the supremum norm; however this does not allow to control the error in the differential equation directly.

Remedy: Apply independent couplings on consecutive intervals and ignore the impact of small jumps at most update times.

IV Consequences of Zaitsev's result (KMT)

Notation:

- L: compensated pure jump process with intensity ν being supported on $B(0, h)$
- $\Sigma \Sigma^{*}=\int x \otimes x \nu(\mathrm{~d} x)$
- B: Wiener process

Theorem: One can couple $\left(L_{t}\right)_{t \in[0, T]}$ and $\left(\Sigma B_{t}\right)_{t \in[0, T]}$ such that

$$
\mathbb{E}\left[\sup _{t \in[0, T]}\left|L_{t}-\Sigma B_{t}\right|^{2}\right]^{1 / 2} \leq \sqrt{\gamma} h\left(c_{1} \log \left(\frac{\sigma^{2} T}{h^{2}} \vee e\right)+c_{2}\right)
$$

where

- $\sigma^{2}=\int_{B(0, h)}|x|^{2} \nu(\mathrm{~d} x)$ and
- $\gamma \geq 1$ is such that $\int\left\langle y^{\prime}, x\right\rangle^{2} \nu(\mathrm{~d} x) \leq \gamma \int\langle y, x\rangle^{2} \nu(\mathrm{~d} x)$ for $|x|=|y|=1$ (\rightarrow uniform ellipticity assumption)
Consequence: For quadrature of Lévy processes, one has algorithms $\left(\widehat{\mathcal{S}}_{N}: N \in \mathbb{N}\right)$ with

$$
\operatorname{err}\left(\widehat{\mathcal{S}}_{N}\right) \leq \mathrm{const} N^{-(1+o(1)) \frac{1}{2 \alpha}}
$$

IV Comments

- Worst case error bounds over the class of Lipschitz functions f w.r.t. supremum norm
- Weak assumptions on coefficient a
- Explicit representation for thresholds h_{k} in terms of the Lévy measure ν
- Improved rates can be proved if f depends only on marginals
- Numerical implementation have been conducted by F. Heidenreich (TU Kaiserslautern)
- Information retrieved from Monte Carlo on low levels can be used to interpolate and to improve the performance.
- One gets fast convergence rates for the quadrature of Lévy processes.

V Numerical experiments

In the numerical test we consider

- a one dimensional Lévy process X with characteristics $\Sigma=b=0$ and

$$
\frac{\mathrm{d} \nu}{\mathrm{~d} x}(x)=\mathbb{1}_{(0,1]}(|x|) \frac{0.1}{|x|^{1+\alpha}}
$$

where $\alpha \in(0,2)$ denotes the Blumenthal-Getoor index

- the SDE

$$
Y_{t}=1+\int_{0}^{t} Y_{s-} \mathrm{d} X_{s}
$$

- a lookback option with strike 1 , that is

$$
f(Y)=\left(\sup _{t \in[0,1]} Y_{t}-1\right)^{+}
$$

So far only results for multilevel without Gaussian compensation are available.

V Adaptive choice of m and n_{1}, \ldots, n_{m}

Expample of n_{1}, \ldots, n_{m} with $\alpha=0.5$.

- Precisions $\delta=(0.003,0.002,0.001,0.0006,0.0003)$.
- Highest levels $m=(3,3,4,4,5)$.

Replication numbers for $\alpha=0.5$

V Adaptive choice of m and n_{1}, \ldots, n_{m}

Expample of n_{1}, \ldots, n_{m} with $\alpha=0.8$.

- Precisions $\delta=(0.01,0.004,0.002,0.001,0.0007)$.
- Highest levels $m=(4,5,6,7,7)$.

Replication numbers for $\alpha=0.8$

V Adaptive choice of m and n_{1}, \ldots, n_{m}

Expample of n_{1}, \ldots, n_{m} with $\alpha=1.2$.

- Precisions $\delta=(0.02,0.01,0.007,0.005,0.0035)$.
- Highest levels $m=(7,8,9,10,11)$.

Replication numbers for $\alpha=1.2$

V Error versus cost

Error and cost of MLMC and classical MC

V Empirical versus theoretical findings

Comparison of the empirical findings

BG index α	0.5	0.8	1.2
Theoretical order (MLMC)	0.5	0.5	0.33
Empirical order (MLMC)	0.47	0.46	0.38
Empirical order (MC)	0.45	0.34	0.23

V Bias/variance estimates

Problem: The theoretic bias estimates are often too big which means that too many pairs of levels are included in the multilevel algorithm.

V Bias/variance estimates

Problem: The theoretic bias estimates are often too big which means that too many pairs of levels are included in the multilevel algorithm.
Remedy: The coarse levels have high iteration numbers so that we have good estimates for

$$
\operatorname{bias}_{k}:=\mathbb{E}\left[f\left(Y^{(k)}\right)-f\left(Y^{(k-1)}\right)\right]
$$

for small k, say for $k=1, \ldots, 4$. Now we do a linear regression on a log-plot through the first 4 empirically observed bias estimates and extrapolate on the biases of the higher levels.

V Bias/variance estimates

Bias and variance estimation for $\alpha=0.5$

Bias and variance estimation for $\alpha=1.2$

Main references

J. Creutzig, S. Dereich, Th. Müller-Gronbach and Klaus Ritter, "Infinite-dimensional quadrature and approximation of distributions", Found. Comput. Math. 9(4):391-429 (2009)
S. Dereich, "Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction", Ann. Appl. Probab. 21(1):283-311 (2011)
S. Dereich, F. Heidenreich, "A multilevel Monte Carlo algorithm for Lévy driven stochastic differential equations", Stochastic Process. Appl. 121(7), 1565-1587 (2011)
M.B. Giles "Multilevel Monte Carlo path simulation", Operations Research 56(3):607-617 (2008).

Thank you very much for your attention

