Multilevel Monte-Carlo algorithms for Lévy-driven SDE's

Steffen Dereich

U Marburg / WWU Münster http://www.mathematik.uni-marburg.de/~dereich/

CREST and 4th Ritsumeikan-Florence Workshop, 8/03/2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline of the talk

- I Introduction
- II The information based complexity point of view

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- III Multilevel Monte Carlo algorithms
- IV Application to Lévy processes
- V Numerical experiments

I Introduction

SDE: $Y = (Y_t)_{t \in [0,1]}$ solution to

$$Y_t = y_0 + \int_0^t b(Y_{s-}) \,\mathrm{d}s + \int_0^t a(Y_{s-}) \,\mathrm{d}X_s,$$

where $\sigma : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y \times d_X}$ and $b : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y}$ are Lipschitz continuous C^{∞} -coefficients and X is a Wiener (or more generally a Lévy process).

I Introduction

SDE: $Y = (Y_t)_{t \in [0,1]}$ solution to

$$Y_t = y_0 + \int_0^t b(Y_{s-}) \,\mathrm{d}s + \int_0^t a(Y_{s-}) \,\mathrm{d}X_s,$$

where $\sigma : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y \times d_X}$ and $b : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y}$ are Lipschitz continuous C^{∞} -coefficients and X is a Wiener (or more generally a Lévy process). **Quadrature problem:** Computation of expectations

 $S(f) := \mathbb{E}[f(Y)],$

where $f : D[0,1] \to \mathbb{R}$ satisfies certain smoothness assumptions (D[0,1] denotes the Skorokhod space of càdlàg functions on [0,1]).

E.g.: $f(x) = (\int_0^1 x_t \, \mathrm{d}t - K)_+$ or $f(x) = \max_{t \in [0,1]} x_t$

Motivation

Approximations: Take a family of approximate solutions $\{Y^{(m)} : m \in \mathbb{N}\}$ with exponentially increasing complexity, for instance Euler with stepsize 2^{-m} .

Motivation

Approximations: Take a family of approximate solutions $\{Y^{(m)} : m \in \mathbb{N}\}$ with exponentially increasing complexity, for instance Euler with stepsize 2^{-m} . **Classical Monte Carlo:**

$$S(f) = \mathbb{E}[f(Y)] \approx \mathbb{E}[f(Y^{(m)})] \approx \frac{1}{n} \sum_{i=1}^{n} f(Y^{(m,i)}),$$

where $Y^{(m,1)}, Y^{(m,2)}, \ldots$ are independent copies of $Y^{(m)}$. Monte Carlo with extrapolation: (Talay, Tubaro '90, Bally, Talay '96)

$$\mathbb{E}[f(Y)] \approx \mathbb{E}[2f(Y^{(m+1)}) - f(Y^{(m)})] \approx \frac{1}{n} \sum_{i=1}^{n} 2f(Y^{(m+1,i)}) - f(Y^{(m,i)}),$$

where $(Y^{(m+1,1)}, Y^{(m,1)}), \ldots$ are independent copies of $(Y^{(m+1)}, Y^{(m)})$.

Motivation

Approximations: Take a family of approximate solutions $\{Y^{(m)} : m \in \mathbb{N}\}$ with exponentially increasing complexity, for instance Euler with stepsize 2^{-m} . **Classical Monte Carlo:**

$$S(f) = \mathbb{E}[f(Y)] \approx \mathbb{E}[f(Y^{(m)})] \approx \frac{1}{n} \sum_{i=1}^{n} f(Y^{(m,i)}),$$

where $Y^{(m,1)}, Y^{(m,2)}, \ldots$ are independent copies of $Y^{(m)}$. Monte Carlo with extrapolation: (Talay, Tubaro '90, Bally, Talay '96)

$$\mathbb{E}[f(Y)] \approx \mathbb{E}[2f(Y^{(m+1)}) - f(Y^{(m)})] \approx \frac{1}{n} \sum_{i=1}^{n} 2f(Y^{(m+1,i)}) - f(Y^{(m,i)}),$$

where $(Y^{(m+1,1)}, Y^{(m,1)}), \ldots$ are independent copies of $(Y^{(m+1)}, Y^{(m)})$. **Approximation error:** Typically one gets for non-path dependent options for classical Monte Carlo

root mean squared error $\approx N^{-1/3}$

and for Monte Carlo with extrapolation

root mean squared error $\approx N^{-2/5}$

in the computational time N as $N \to \infty$.

I Motivation

Alternatives for approximate soutions: Kusuoka-Lyons-Victoir methods, splitting methods, . . .

 $\mbox{Strong research activity}$ since the 90s with contribution by (e.g.) Kusuoka, Kohatsu-Higa and many others

Focus of the talk:

- I Lower bounds for quadrature problems
- II Multilevel methods with a focus on Lévy-driven SDEs

In [I] we will follow the ideas of information based complexity (Novak, Plaskota, Ritter, Sloan, Wasilkowski, Wozniakowski, ...) and specify an algorithmic problem and provide lower bounds.

In [II] we briefly introduce multilevel Monte Carlo and provide upper bounds for their efficiency for Lévy-driven SDEs

II Information based complexity point of view

Question: Can one prove lower bounds in the quadrature problem?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We restrict attention to continuous diffusions.

For doing so we need to specify

- (a) a class ${\mathcal F}$ of functions on which we test the algorithm
- (b) the computational cost of algorithms and
- (c) an error criterion.

II Information based complexity point of view

Question: Can one prove lower bounds in the quadrature problem?

We restrict attention to continuous diffusions.

For doing so we need to specify

- (a) a class ${\mathcal F}$ of functions on which we test the algorithm
- (b) the computational cost of algorithms and
- (c) an error criterion.

(a): We consider \mathcal{F} as the 1-Lipschitz continuous functions $f : C[0, 1] \rightarrow \mathbb{R}$ (w.r.t. supremum norm)

(b): Specify a nested sequence $\{V_n : n \in \mathbb{N}_0\}$ of linear subsets of C[0, 1] with dimension dim $(V_n) = n$ and charge each evaluation of f for a path $x \in V_n \setminus V_{n-1}$ with cost n. All real number operations are allowed.

(c): An algorithm \hat{S} produces a possibly random output $\hat{S}(f)$ when applied to f and we consider the worst-case-error

$$\operatorname{err}(\widehat{S}) := \sup_{f \in \mathcal{F}} \mathbf{E}[(S(f) - \widehat{S}(f))^2]^{1/2}.$$

II Information based complexity point of view

Question: Can one prove lower bounds in the quadrature problem?

We restrict attention to continuous diffusions.

For doing so we need to specify

- (a) a class ${\mathcal F}$ of functions on which we test the algorithm
- (b) the computational cost of algorithms and
- (c) an error criterion.

(a): We consider \mathcal{F} as the 1-Lipschitz continuous functions $f : C[0, 1] \rightarrow \mathbb{R}$ (w.r.t. supremum norm)

(b): Specify a nested sequence $\{V_n : n \in \mathbb{N}_0\}$ of linear subsets of C[0, 1] with dimension dim $(V_n) = n$ and charge each evaluation of f for a path $x \in V_n \setminus V_{n-1}$ with cost n. All real number operations are allowed.

(c): An algorithm \widehat{S} produces a possibly random output $\widehat{S}(f)$ when applied to f and we consider the worst-case-error

$$\operatorname{err}(\widehat{S}) := \sup_{f \in \mathcal{F}} \mathbf{E}[(S(f) - \widehat{S}(f))^2]^{1/2}.$$

Task: Prove lower bounds for the minimal error

 $e(N) := \inf\{\operatorname{err}(\widehat{S}) : \operatorname{cost}(\widehat{S}) \le N\}.$

Ref.: Creutzig, D, Müller-Gronbach, Ritter '09 Variable subspace sampling:

 $e^{\mathrm{variable}}(N) \geq \mathrm{const} N^{-1/2}$

・ロト・日本・モート モー うへぐ

Ref.: Creutzig, D, Müller-Gronbach, Ritter '09 **Variable subspace sampling:**

 $e^{\text{variable}}(N) \ge \text{const } N^{-1/2}$

Fixed subspace sampling: Algorithm needs to specify one subspace V_n at first and sampling is only possible in V_n at cost n.

 $e^{\text{fixed}}(N) \geq \text{const} N^{-1/4} \left(\log N\right)^{-3/4}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ref.: Creutzig, D, Müller-Gronbach, Ritter '09 **Variable subspace sampling:**

 $e^{\text{variable}}(N) \ge \text{const } N^{-1/2}$

Fixed subspace sampling: Algorithm needs to specify one subspace V_n at first and sampling is only possible in V_n at cost n.

 $e^{\rm fixed}(N) \geq {\rm const}\,N^{-1/4}\,(\log N)^{-3/4}$

Full space sampling: Algorithm is allowed to sample arbitrarily and each evaluation of f costs one unit.

 $e^{\rm free}(N) \geq {\rm const} \, N^{-1/2} (\log N)^{-3/2}$

Ref.: Creutzig, D, Müller-Gronbach, Ritter '09 **Variable subspace sampling:**

 $e^{\text{variable}}(N) > \text{const} N^{-1/2}$

Fixed subspace sampling: Algorithm needs to specify one subspace V_n at first and sampling is only possible in V_n at cost n.

 $e^{\rm fixed}(N) \geq {\rm const}\,N^{-1/4}\,(\log N)^{-3/4}$

Full space sampling: Algorithm is allowed to sample arbitrarily and each evaluation of f costs one unit.

 $e^{\rm free}(N) \geq {\rm const}\,N^{-1/2}(\log N)^{-3/2}$

Comments: The first two lower bounds are sharp up to logarithms and there exist algorithms that reach the lower bounds up to logarithms under a reasonable notion of "cost" (runtime):

- ▶ Fixed subspace sampling: classical Monte Carlo with Euler
- Variable subspace sampling: multilevel Monte Carlo with Euler

II Remarks on the proofs

The proofs are based on

▶ average Kolmogorov widths of diffusions in $V = (C[0, 1], \|\cdot\|_{\infty})$ that is the asymptotics of

 $d_n := \inf \{ \mathbb{E}[d(Y, V_0)] : V_0 \subset V, \dim(V_0) \leq 2^{n-1} \}$

- > an idea taken from Bakhvalov ('59) for proving lower bounds
- a connection to quantization complexity

II Remarks on the proofs

The proofs are based on

▶ average Kolmogorov widths of diffusions in $V = (C[0, 1], \|\cdot\|_{\infty})$ that is the asymptotics of

 $d_n := \inf \{ \mathbb{E}[d(Y, V_0)] : V_0 \subset V, \dim(V_0) \leq 2^{n-1} \}$

- > an idea taken from Bakhvalov ('59) for proving lower bounds
- a connection to quantization complexity

Comments:

- General Gaussian measures are included in the analysis
- ► The results are sharp up to powers of logarithms → Multilevel Monte Carlo algorithms

Ref.: Heinrich '98, Giles '08

Aim: Computation of $S(f) := \mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V, \|\cdot\|)$ (e.g., $Y = (Y_t)_{t \in [0,1]}$ solution of SDE)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ref.: Heinrich '98, Giles '08

Aim: Computation of $S(f) := \mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V, \|\cdot\|)$ (e.g., $Y = (Y_t)_{t \in [0,1]}$ solution of SDE)

Approximate solutions: $Y^{(1)}, Y^{(2)}, \dots$ (e.g., $Y^{(k)}$ Euler approximation with step size 2^{-k})

Ref.: Heinrich '98, Giles '08

Aim: Computation of $S(f) := \mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V, \|\cdot\|)$ (e.g., $Y = (Y_t)_{t \in [0,1]}$ solution of SDE)

Approximate solutions: $Y^{(1)}, Y^{(2)}, \dots$ (e.g., $Y^{(k)}$ Euler approximation with step size 2^{-k})

Classical Monte Carlo: $Y \approx Y^{(m)}$ Approximate Y by $Y^{(m)}$ and use Monte Carlo to approximate $\mathbb{E}[f(Y^{(m)})]$.

Ref.: Heinrich '98, Giles '08

Aim: Computation of $S(f) := \mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V, \|\cdot\|)$ (e.g., $Y = (Y_t)_{t \in [0,1]}$ solution of SDE)

Approximate solutions: $Y^{(1)}, Y^{(2)}, ...$ (e.g., $Y^{(k)}$ Euler approximation with step size 2^{-k})

Classical Monte Carlo: $Y \approx Y^{(m)}$ Approximate Y by $Y^{(m)}$ and use Monte Carlo to approximate $\mathbb{E}[f(Y^{(m)})]$.

Multilevel scheme: $Y \approx Y^{(m)} \leftrightarrow Y^{(m-1)} \leftrightarrow \ldots \leftrightarrow Y^{(2)} \leftrightarrow Y^{(1)}$ Use Monte Carlo to approximate $\mathbb{E}[f(Y^{(k)}) - f(Y^{(k-1)})]$.

Ref.: Heinrich '98, Giles '08

Aim: Computation of $S(f) := \mathbb{E}[f(Y)]$ for an implicit random element Y attaining values in a normed space $(V, \|\cdot\|)$ (e.g., $Y = (Y_t)_{t \in [0,1]}$ solution of SDE)

Approximate solutions: $Y^{(1)}, Y^{(2)}, ...$ (e.g., $Y^{(k)}$ Euler approximation with step size 2^{-k})

Classical Monte Carlo: $Y \approx Y^{(m)}$ Approximate Y by $Y^{(m)}$ and use Monte Carlo to approximate $\mathbb{E}[f(Y^{(m)})]$.

Multilevel scheme: $Y \approx Y^{(m)} \leftrightarrow Y^{(m-1)} \leftrightarrow \ldots \leftrightarrow Y^{(2)} \leftrightarrow Y^{(1)}$ Use Monte Carlo to approximate $\mathbb{E}[f(Y^{(k)}) - f(Y^{(k-1)})]$.

- Features: scheme very efficient for diffusions, Gaussian processes, ...
 - often errors of order $\mathcal{O}(N^{-1/2})$
 - in the setting of part II: $\mathcal{O}(N^{-1/2}(\log N)^{3/2})$
 - scheme is robust: applicable under weak assumptions, good performance for discontinuous f

III The MLMC algorithm

Telescoping sum:

$$\mathbb{E}[f(Y^{(m)})] = \sum_{k=2}^{m} \mathbb{E}[f(Y^{(k)}) - f(Y^{(k-1)})] + \mathbb{E}[f(Y^{(1)})].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Approximate each expectation $\mathbb{E}[f(Y^{(k)}) - f(Y^{(k-1)})]$, resp. $\mathbb{E}[f(Y^{(1)})]$, by n_k independent Monte-Carlo simulations.

Output: $\widehat{S}(f) = \text{sum of the individual random approximations.}$

III The MLMC algorithm

Telescoping sum:

$$\mathbb{E}[f(Y^{(m)})] = \sum_{k=2}^{m} \mathbb{E}[f(Y^{(k)}) - f(Y^{(k-1)})] + \mathbb{E}[f(Y^{(1)})].$$

Approximate each expectation $\mathbb{E}[f(Y^{(k)}) - f(Y^{(k-1)})]$, resp. $\mathbb{E}[f(Y^{(1)})]$, by n_k independent Monte-Carlo simulations.

Output: $\widehat{S}(f) = \text{sum of the individual random approximations.}$

Error estimate (mse):

$$\begin{split} \mathbb{E}\big[\big(S(f) - \widehat{S}(f)\big)^2\big] = & |\mathbb{E}[f(Y)] - \mathbb{E}[f(Y^{(m)})]|^2 \\ &+ \sum_{k=2}^m \frac{1}{n_k} \operatorname{var}(f(Y^{(k)}) - f(Y^{(k-1)})) + \frac{1}{n_1} \operatorname{var}(f(Y^{(1)})). \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Advantage: only few of the expensive simulations are necessary.

III Error estimates on Lip-class

If f is Lipschitz continuous with coefficient one, then

$$\mathbb{E}ig[ig(\mathcal{S}(f) - \widehat{\mathcal{S}}(f)ig)^2ig] \leq \mathcal{W}(\mathbb{P}_Y, \mathbb{P}_{Y^{(m)}})^2 + ext{const} \sum_{k=1}^m rac{1}{n_k} \mathbb{E}[\|Y - Y^{(k)}\|^2],$$

where ${\boldsymbol{\mathcal{W}}}$ denotes the Wasserstein metric

$$\mathcal{W}(Q_1, Q_2) = \inf \left\{ \int \|x - y\| d\xi(x, y) : Q_1 = \pi_1(\xi), Q_2 = \pi_2(\xi) \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

III Error estimates on Lip-class

If f is Lipschitz continuous with coefficient one, then

$$\mathbb{E}\big[\big(\boldsymbol{S}(f) - \widehat{\boldsymbol{S}}(f)\big)^2\big] \leq \mathcal{W}(\mathbb{P}_{\boldsymbol{Y}}, \mathbb{P}_{\boldsymbol{Y}^{(m)}})^2 + \operatorname{const} \sum_{k=1}^m \frac{1}{n_k} \mathbb{E}[\|\boldsymbol{Y} - \boldsymbol{Y}^{(k)}\|^2],$$

where $\boldsymbol{\mathcal{W}}$ denotes the Wasserstein metric

$$\mathcal{W}(Q_1, Q_2) = \inf \left\{ \int \|x - y\| d\xi(x, y) : Q_1 = \pi_1(\xi), Q_2 = \pi_2(\xi) \right\}$$

Note: The error estimate does not depend on f and we need estimates for (W) $\mathcal{W}(\mathbb{P}_Y, \mathbb{P}_{Y^{(m)}})$ (weak approximation) (S) $\mathbb{E}[||Y - Y^{(k)}||^2]$ (strong approximation)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

III Complexity theorem

Assumptions: There exist $0 < \beta \leq 2\alpha$ and a real constant *c* s.th.

(W) $\mathcal{W}(\mathbb{P}_Y, \mathbb{P}_{Y^{(m)}}) \leq c(2^{-m})^{\alpha}$

(S) $\mathbb{E}[||Y - Y^{(k)}||^2] \le c(2^{-m})^{\beta}$

Further we assign each joint simulation of $f(Y^{(k)}) - f(Y^{(k-1)})$ the cost $c 2^k$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

III Complexity theorem

Assumptions: There exist $0 < \beta \leq 2\alpha$ and a real constant *c* s.th.

 $(\mathsf{W}) \ \mathcal{W}(\mathbb{P}_{Y},\mathbb{P}_{Y^{(m)}}) \leq c(2^{-m})^{\alpha}$

(S) $\mathbb{E}[||Y - Y^{(k)}||^2] \le c(2^{-m})^{\beta}$

Further we assign each joint simulation of $f(Y^{(k)}) - f(Y^{(k-1)})$ the cost $c 2^k$.

Theorem: (Giles '08) Fixing the parameters (highest level *m* and iteration numbers n_1, \ldots, n_m) appropriately one obtains a sequence of MLMC algorithms $(\widehat{S}_N : N \in \mathbb{N})$ each having cost less than or equal to *N* and satisfying

$$\operatorname{err}(\widehat{S}_{N}) = \sup_{f \in \operatorname{Lip}_{1}} \mathsf{E}[(S(f) - \widehat{S}_{N}(f))^{2}]^{1/2} \le \operatorname{const} \begin{cases} N^{-1/2}, & \beta > 1\\ N^{-1/2} (\log N)^{1/2}, & \beta = 1\\ N^{-\frac{\alpha}{1+2\alpha-\beta}}, & \beta < 1, \end{cases}$$

where ${\rm const}$ is a constant only depending on α,β and c.

III Complexity theorem

Assumptions: There exist $0 < \beta \leq 2\alpha$ and a real constant *c* s.th.

 $(\mathsf{W}) \ \mathcal{W}(\mathbb{P}_Y, \mathbb{P}_{Y^{(m)}}) \leq c(2^{-m})^{\alpha}$

(S) $\mathbb{E}[||Y - Y^{(k)}||^2] \le c(2^{-m})^{\beta}$

Further we assign each joint simulation of $f(Y^{(k)}) - f(Y^{(k-1)})$ the cost $c 2^k$.

Theorem: (Giles '08) Fixing the parameters (highest level *m* and iteration numbers n_1, \ldots, n_m) appropriately one obtains a sequence of MLMC algorithms $(\widehat{S}_N : N \in \mathbb{N})$ each having cost less than or equal to *N* and satisfying

$$\operatorname{err}(\widehat{S}_{N}) = \sup_{f \in \operatorname{Lip}_{1}} \mathsf{E}[(S(f) - \widehat{S}_{N}(f))^{2}]^{1/2} \le \operatorname{const} \begin{cases} N^{-1/2}, & \beta > 1\\ N^{-1/2} (\log N)^{1/2}, & \beta = 1\\ N^{-\frac{\alpha}{1+2\alpha-\beta}}, & \beta < 1, \end{cases}$$

where ${\rm const}$ is a constant only depending on α,β and ${\it c}.$

Conversely: Appropriate classical Monte Carlo algorithms $(\widehat{\mathcal{S}}_{N} : N \in \mathbb{N})$ lead to

 $\operatorname{err}(\widehat{\mathcal{S}}_N) \leq \operatorname{const} N^{-\frac{\alpha}{1+2\alpha}}.$

(日) (同) (三) (三) (三) (○) (○)

IV Lévy process $X = (X_t)_{t \in [0,1]}$ (L²-integrable)

Now: MLMC for Lévy-driven stochastic differential equations!

Lévy process: discontinuous extension of the Wiener process in the sense that

X_{t1},...,X_{tn} − X_{tn-1} are independent (0 ≤ t1 ≤ ··· ≤ tn) independent increments

►
$$X_t - X_s \stackrel{\mathcal{L}}{=} X_{t-s} \ (0 \le s \le t)$$

stationary increments

> X is a.s. càdlàg (right cont. with left hand limits)

IV Lévy process $X = (X_t)_{t \in [0,1]}$ (L²-integrable)

Now: MLMC for Lévy-driven stochastic differential equations!

Lévy process: discontinuous extension of the Wiener process in the sense that

X_{t1},...,X_{tn} − X_{tn-1} are independent (0 ≤ t1 ≤ ··· ≤ tn) independent increments

►
$$X_t - X_s \stackrel{\mathcal{L}}{=} X_{t-s} \ (0 \le s \le t)$$

stationary increments

X is a.s. càdlàg (right cont. with left hand limits)

Lévy-Itô decompositio: The Lévy process X is a combination of

- ► a Wiener process, parameterized via its symmetric covariance $\Sigma\Sigma^* \in \mathbb{R}^{d_X \times d_X}$
- ▶ a drift, parameterized via the trend $b \in \mathbb{R}^{d_X}$, and
- ► a compensated pure jump process (L²-martingale), parameterized via the jump intensity v (Lévy measure), a measure on ℝ^dx \{0} with

$$\int |x|^2 \,\nu(\mathrm{d} x) < \infty.$$

(日) (同) (三) (三) (三) (○) (○)

SDE: $Y = (Y_t)_{t \in [0,1]}$ solution to

$$Y_t = y_0 + \int_0^t a(Y_{s-}) \,\mathrm{d}X_s,$$

where $a : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y \times d_X}$ is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

 $X_t = \Sigma W_t + bt + L_t$

SDE: $Y = (Y_t)_{t \in [0,1]}$ solution to

$$Y_t = y_0 + \int_0^t a(Y_{s-}) \,\mathrm{d}X_s,$$

where $a : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y \times d_X}$ is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

 $X_t = \Sigma W_t + bt + L_t$

SDE: $Y = (Y_t)_{t \in [0,1]}$ solution to

$$Y_t = y_0 + \int_0^t a(Y_{s-}) \,\mathrm{d}X_s,$$

where $a : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y \times d_X}$ is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

 $X_t = \Sigma W_t + bt + L_t$

SDE: $Y = (Y_t)_{t \in [0,1]}$ solution to

$$Y_t = y_0 + \int_0^t a(Y_{s-}) \,\mathrm{d}X_s,$$

where $a : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y \times d_X}$ is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

 $X_t = \Sigma W_t + bt + L_t$

SDE: $Y = (Y_t)_{t \in [0,1]}$ solution to

$$Y_t = y_0 + \int_0^t a(Y_{s-}) \,\mathrm{d}X_s,$$

where $a : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y \times d_X}$ is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

 $X_t = \Sigma W_t + bt + L_t$

where W is an \mathbb{R}^{d_X} -dimensional standard Wiener process and L ist the compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of *L* are dense in [0, 1]. One can only simulate the jumps being larger than a threshold and perfect simulation of increments is typically not feasible!

SDE: $Y = (Y_t)_{t \in [0,1]}$ solution to

$$Y_t = y_0 + \int_0^t a(Y_{s-}) \,\mathrm{d}X_s,$$

where $a : \mathbb{R}^{d_Y} \to \mathbb{R}^{d_Y \times d_X}$ is Lipschitz continuous.

Simulation of Lévy processes is based on the Lévy-Itô decomposition:

 $X_t = \Sigma W_t + bt + L_t$

where W is an \mathbb{R}^{d_X} -dimensional standard Wiener process and L ist the compensated pure jump part.

Problem: If ν is an infinite measure, then the discontinuities of *L* are dense in [0, 1]. One can only simulate the jumps being larger than a threshold and perfect simulation of increments is typically not feasible!

Idea: Compensate the "small jumps" by a Gaussian correction (Asmussen, Rosiński '01)

IV Approximations for L

Thresholds: We choose thresholds $h_1 > h_2 > \cdots > 0$ that are small and satisfy $\nu(B(0, h_k)^c) \le 2^k.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Further, let $\varepsilon_k = 2^{-k}$.

IV Approximations for L

Thresholds: We choose thresholds $h_1 > h_2 > \cdots > 0$ that are small and satisfy

 $\nu(B(0,h_k)^c) \leq 2^k.$

Further, let $\varepsilon_k = 2^{-k}$.

Point process representation for L:

$$L_t = L^2 - \lim_{h \downarrow 0} \int_{B(0,h)^c \times (0,t]} x \,\mathrm{d}(\xi - \bar{\nu}) (\mathrm{d}x, \mathrm{d}s)$$

where ξ is a Poisson point process with intensity $\bar{\nu} = \nu \otimes \lambda$. As approximation we choose

$$L^{(k)} = \int_{B(0,h_k)^c \times (0,t]} x \,\mathrm{d}(\xi - \bar{\nu}) (\mathrm{d}x,\mathrm{d}s)$$

IV Approximations for L

Thresholds: We choose thresholds $h_1 > h_2 > \cdots > 0$ that are small and satisfy

 $\nu(B(0,h_k)^c) \leq 2^k.$

Further, let $\varepsilon_k = 2^{-k}$.

Point process representation for L:

$$L_t = L^2 - \lim_{h \downarrow 0} \int_{B(0,h)^c \times (0,t]} x \,\mathrm{d}(\xi - \bar{\nu}) (\mathrm{d}x, \mathrm{d}s)$$

where ξ is a Poisson point process with intensity $\bar{\nu} = \nu \otimes \lambda$. As approximation we choose

$$L^{(k)} = \int_{B(0,h_k)^c \times (0,t]} x \,\mathrm{d}(\xi - \bar{\nu}) (\mathrm{d}x,\mathrm{d}s)$$

Joint simulation of two levels $L^{(k)}, L^{(k-1)}$: Simulate the restricted point process $\xi|_{B(0,h_k)^c \times (0,1]}$ which consists in the average of

$$\bar{\nu}(B(0,h_k)^c\times(0,1])=\int_{B(0,h_k)}\nu(\mathrm{d} x)$$

(日) (日) (日) (日) (日) (日) (日) (日)

points.

IV Euler type approximate solutions

Updates: We denote by \mathbb{T}_k the random set of times that contains 0 and 1 and all times $t \in (0, 1)$ with

 $\Delta L_t := L_t - L_{t-} \in B(0, h_k)^c \text{ or } [t - \varepsilon_k, t) \cap \mathbb{T}_k = \{t - \varepsilon_k\}$

 \mathbb{T}_k contains all discontinuities of $L^{(k)}$ and further points are added to ensure that updates are not ore than ε_k time units apart.

Approximate solutions: we set $Y_0^{(k)} = y_0$ and for neighboring times t < t' in \mathbb{T}_k , we set

 $Y_{t'}^{(k)} = Y_t^{(k)} + a(Y_t^{(k)})(X_{t'}^{(k)} - X_t^{(k)})$

where $X_{t}^{(k)} = W_{t} + bt + L_{t}^{(k)}$

Simulation of
$$(L^{(k)}, L^{(k-1)})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Simulation of
$$(L^{(k)}, L^{(k-1)})$$

compensated jumps greater h'

(日) (四) (日) (日) (日) æ.

Simulation of $(L^{(k)}, L^{(k-1)})$, W

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q ()~

Simulation of $(L^{(k)}, L^{(k-1)})$, W and $(X^{(k)}, X^{(k-1)})$.

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 「園」 釣ん(?)

IV Classes of algorithms

Algorithms $\widehat{\mathcal{S}}$ are specified via the parameters:

- ▶ $m \in \mathbb{N}$: # of levels
- n_1, \ldots, n_m : # of simulations of pairs $(Y^{(k)}, Y^{(k-1)})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

IV Classes of algorithms

Algorithms $\widehat{\mathcal{S}}$ are specified via the parameters:

- ▶ $m \in \mathbb{N}$: # of levels
- n_1, \ldots, n_m : # of simulations of pairs $(Y^{(k)}, Y^{(k-1)})$

Class A_0 : (MLMC0, neglect small jumps) Approximation $Y^{(k)}$ is obtained via \mathbb{T}_k -Euler scheme with driving process

 $X_t^{(k)} = \Sigma W_t + L_t^{(k)} + bt,$

(日) (同) (三) (三) (三) (○) (○)

where $L^{(k)}$ is constituted by the compensated jumps of L larger than h_k .

IV Classes of algorithms

Algorithms $\widehat{\mathcal{S}}$ are specified via the parameters:

- ▶ $m \in \mathbb{N}$: # of levels
- n_1, \ldots, n_m : # of simulations of pairs $(Y^{(k)}, Y^{(k-1)})$

Class A_0 : (MLMC0, neglect small jumps) Approximation $\Upsilon^{(k)}$ is obtained via \mathbb{T}_k -Euler scheme with driving process

 $X_t^{(k)} = \Sigma W_t + L_t^{(k)} + bt,$

where $L^{(k)}$ is constituted by the compensated jumps of L larger than h_k .

Class A_1 : (MLMC1, Gaussian compensation) Approximation $Y^{(k)}$ is obtained via \mathbb{T}_k -Euler scheme with driving process

$$X_t^{(k)} = \Sigma W_t + \Sigma^{(m)} B_t + L_t^{(k)} + bt,$$

where B is an independent Wiener process and

$$\Sigma^{(m)}(\Sigma^{(m)})^* = \int_{\mathcal{B}(0,h_m)} x \otimes x \,\nu(\mathrm{d} x)$$

We express the asymptotic estimates in terms of the **Blumenthal-Getoor index:**

$$\alpha := \inf \left\{ p > 0 : \int_{B(0,1)} |x|^p \nu(\mathrm{d} x) < \infty \right\} \in [0,2]$$

We express the asymptotic estimates in terms of the **Blumenthal-Getoor index:**

$$\alpha := \inf \left\{ p > 0 : \int_{B(0,1)} |x|^p \nu(\mathrm{d} x) < \infty \right\} \in [0,2]$$

Main Result: (D, Heidenreich '11, D '11) For i = 0, 1, there exist multilevel Monte Carlo algorithms $\{\widehat{\mathcal{S}}_{N}^{i} : N \in \mathbb{N}\}$ in \mathcal{A}_{i} with $\operatorname{cost}(\widehat{\mathcal{S}}_{N}^{i}) \leq N$ and

 $\operatorname{err}(\widehat{\mathcal{S}}_{N}^{i}) \leq N^{-(1+o(1))\varphi_{i}(\alpha)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We express the asymptotic estimates in terms of the **Blumenthal-Getoor index:**

$$\alpha := \inf \left\{ p > 0 : \int_{B(0,1)} |x|^p \nu(\mathrm{d} x) < \infty \right\} \in [0,2]$$

Main Result: (D, Heidenreich '11, D '11) For i = 0, 1, there exist multilevel Monte Carlo algorithms $\{\widehat{\mathcal{S}}_{N}^{i} : N \in \mathbb{N}\}$ in \mathcal{A}_{i} with $\operatorname{cost}(\widehat{\mathcal{S}}_{N}^{i}) \leq N$ and

$$\operatorname{err}(\widehat{\mathcal{S}}_{N}^{i}) \leq N^{-(1+o(1))\varphi_{i}(\alpha)}$$

for

•
$$\varphi_0(\alpha) = (\frac{1}{\alpha} - \frac{1}{2}) \wedge \frac{1}{2}$$

• $\varphi_1(\alpha) = \frac{4-\alpha}{6\alpha} \wedge \frac{1}{2}$ if $\Sigma = 0$ or $\alpha \notin [1, \frac{4}{3}]$
• $\varphi_1(\alpha) = \frac{\alpha}{6\alpha - 4}$ if $\Sigma \neq 0$ and $\alpha \in [1, \frac{4}{3}]$.

Note: The analysis of \mathcal{A}_1 requires a uniform ellipticity assumption on ν .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Related work on quadrature of marginals:

- Jacod, Kurtz, Méléard, and Protter '05
- Tanaka and Kohatsu-Higa '09

IV Remarks on the proofs

Recall that we need estimates for

(W) $W(\mathbb{P}_{Y}, \mathbb{P}_{Y^{(m)}})$ (weak approximation)

(S) $\mathbb{E}[||Y - Y^{(k)}||^2]$ (strong approximation)

Proof for class \mathcal{A}_0 :

Control (S) of Euler scheme (as for classical diffusions)

- This gives also an upper bound for (W).
- Balance errors.

IV Remarks on the proofs

Recall that we need estimates for

(W) $\mathcal{W}(\mathbb{P}_{Y}, \mathbb{P}_{Y^{(m)}})$ (weak approximation)

(S) $\mathbb{E}[||Y - Y^{(k)}||^2]$ (strong approximation)

Proof for class A_0 :

- Control (S) of Euler scheme (as for classical diffusions)
- This gives also an upper bound for (W).
- Balance errors.

Proof for class A_1 :

New estimate for (W) by applying a KMT-like coupling (Zaitsev '98) for small jump part, say L'.

Problem: Coupling yields small error in the supremum norm; however this does not allow to control the error in the differential equation directly.

Remedy: Apply independent couplings on consecutive intervals and ignore the impact of small jumps at most update times.

IV Consequences of Zaitsev's result (KMT)

Notation:

- L: compensated pure jump process with intensity ν being supported on B(0, h)
- $\blacktriangleright \Sigma\Sigma^* = \int x \otimes x \,\nu(\mathrm{d}x)$
- ▶ B: Wiener process

Theorem: One can couple $(L_t)_{t \in [0,T]}$ and $(\Sigma B_t)_{t \in [0,T]}$ such that

$$\mathbb{E}[\sup_{t\in[0,T]}|L_t-\Sigma B_t|^2]^{1/2} \leq \sqrt{\gamma}h\Big(c_1\log\Big(\frac{\sigma^2 T}{h^2}\vee e\Big)+c_2\Big),$$

where

- $\sigma^2 = \int_{B(0,h)} |x|^2 \nu(\mathrm{d}x)$ and
- ▶ $\gamma \ge 1$ is such that $\int \langle y', x \rangle^2 \nu(dx) \le \gamma \int \langle y, x \rangle^2 \nu(dx)$ for |x| = |y| = 1(→ uniform ellipticity assumption)

Consequence: For quadrature of Lévy processes, one has algorithms $(\widehat{\mathcal{S}}_N:N\in\mathbb{N})$ with

 $\operatorname{err}(\widehat{\mathcal{S}}_{N}) \leq \operatorname{const} N^{-(1+o(1))\frac{1}{2\alpha}}$

IV Comments

- Worst case error bounds over the class of Lipschitz functions f w.r.t. supremum norm
- Weak assumptions on coefficient a
- Explicit representation for thresholds h_k in terms of the Lévy measure ν
- Improved rates can be proved if f depends only on marginals
- Numerical implementation have been conducted by F. Heidenreich (TU Kaiserslautern)
- Information retrieved from Monte Carlo on low levels can be used to interpolate and to improve the performance.
- One gets fast convergence rates for the quadrature of Lévy processes.

V Numerical experiments

In the numerical test we consider

► a one dimensional Lévy process X with characteristics $\Sigma = b = 0$ and

$$\frac{\mathrm{d}\nu}{\mathrm{d}x}(x) = 1_{(0,1]}(|x|)\frac{0.1}{|x|^{1+\alpha}},$$

where $\alpha \in (0,2)$ denotes the Blumenthal-Getoor index

the SDE

$$Y_t = 1 + \int_0^t Y_{s-} \,\mathrm{d}X_s$$

a lookback option with strike 1, that is

$$f(Y) = (\sup_{t \in [0,1]} Y_t - 1)^+.$$

So far only results for multilevel without Gaussian compensation are available.

V Adaptive choice of m and n_1, \ldots, n_m

Expample of n_1, \ldots, n_m with $\alpha = 0.5$.

- Precisions $\delta = (0.003, 0.002, 0.001, 0.0006, 0.0003)$.
- Highest levels m = (3, 3, 4, 4, 5).

Replication numbers for $\alpha = 0.5$

level k

(日)、

V Adaptive choice of m and n_1, \ldots, n_m

Expample of n_1, \ldots, n_m with $\alpha = 0.8$.

- Precisions $\delta = (0.01, 0.004, 0.002, 0.001, 0.0007)$.
- Highest levels m = (4, 5, 6, 7, 7).

Replication numbers for $\alpha = 0.8$

level k

・ロト ・聞ト ・ヨト ・ヨト

V Adaptive choice of m and n_1, \ldots, n_m

Expample of n_1, \ldots, n_m with $\alpha = 1.2$.

- Precisions $\delta = (0.02, 0.01, 0.007, 0.005, 0.0035).$
- Highest levels m = (7, 8, 9, 10, 11).

Replication numbers for $\alpha = 1.2$

level k

・ロト ・聞ト ・ヨト ・ヨト

э

V Error versus cost

Error and cost of MLMC and classical MC

996

æ

V Empirical versus theoretical findings

Comparison of the empirical findings

BG index α	0.5	0.8	1.2
Theoretical order (MLMC)	0.5	0.5	0.33
Empirical order (MLMC)	0.47	0.46	0.38
Empirical order (MC)	0.45	0.34	0.23

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem: The theoretic bias estimates are often too big which means that too many pairs of levels are included in the multilevel algorithm.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem: The theoretic bias estimates are often too big which means that too many pairs of levels are included in the multilevel algorithm.

Remedy: The coarse levels have high iteration numbers so that we have good estimates for

 $\mathrm{bias}_k := \mathbb{E}[f(Y^{(k)}) - f(Y^{(k-1)})]$

for small k, say for k = 1, ..., 4. Now we do a linear regression on a log-plot through the first 4 empirically observed bias estimates and extrapolate on the biases of the higher levels.

V Bias/variance estimates

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Main references

J. Creutzig, S. Dereich, Th. Müller-Gronbach and Klaus Ritter, "Infinite-dimensional quadrature and approximation of distributions", *Found. Comput. Math.* **9**(4):391-429 (2009)

S. Dereich, "Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction", Ann. Appl. Probab. **21**(1):283-311 (2011)

S. Dereich, F. Heidenreich, "A multilevel Monte Carlo algorithm for Lévy driven stochastic differential equations", Stochastic Process. Appl. **121**(7), 1565-1587 (2011)

M.B. Giles "Multilevel Monte Carlo path simulation", *Operations Research* **56**(3):607-617 (2008).

Thank you very much for your attention

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <